Monte Carlo simulation;
Liquid-liquid equilibria;
TraPPE force field;
n-Dodecane;
Ethanol;
Water;
UNITED-ATOM DESCRIPTION;
GLYCOL DIMETHYL ETHER;
SQUARE-WELL MOLECULES;
PHASE-EQUILIBRIA;
GIBBS-ENSEMBLE;
VAPOR-LIQUID;
TRANSFERABLE POTENTIALS;
SELECTIVE EXTRACTION;
PRESSURE-DEPENDENCE;
WATER;
D O I:
10.1016/j.fluid.2015.07.011
中图分类号:
O414.1 [热力学];
学科分类号:
摘要:
Obtaining knowledge of the mutual miscibility of alkanes, surfactants, and water over a wide range of temperatures and pressures is of great relevance for the energy industry. Molecular simulations using advanced sampling techniques and transferable force fields can serve as a predictive method to study a variety of phase equilibria at different temperatures, pressures, and overall compositions. In this work, configurational-bias Monte Carlo simulations in the NpT Gibbs ensemble with the Transferable Potentials for Phase Equilibria (TraPPE) force field are applied to investigate the binary mixture of n-dodecane and ethanol at pressures of 0.1 and 100 MPa and the ternary mixture of these compounds with water at one state point. The simulations qualitatively reproduce the increase of the upper critical solution temperature (UCST) with increasing pressure, but the miscibility gap is overestimated at both pressures and the UCSTs are shifted up by about 50K compared to the experimental values. The TraPPE model correctly shows a gradual decrease for the ethanol solubility in the n-dodecane-rich phase upon addition of water to the mixture. (C) 2015 Elsevier B.V. All rights reserved.
机构:
Univ Santiago de Compostela, Dept Chem Engn, E-15782 Santiago De Compostela, SpainUniv Santiago de Compostela, Dept Chem Engn, E-15782 Santiago De Compostela, Spain
Arce, A
Rodríguez, O
论文数: 0引用数: 0
h-index: 0
机构:
Univ Santiago de Compostela, Dept Chem Engn, E-15782 Santiago De Compostela, SpainUniv Santiago de Compostela, Dept Chem Engn, E-15782 Santiago De Compostela, Spain
Rodríguez, O
Soto, A
论文数: 0引用数: 0
h-index: 0
机构:
Univ Santiago de Compostela, Dept Chem Engn, E-15782 Santiago De Compostela, SpainUniv Santiago de Compostela, Dept Chem Engn, E-15782 Santiago De Compostela, Spain