机构:
CUNY, Baruch Coll, Stat & CIS, One Baruch Way,Box 11-220, New York, NY 10010 USACUNY, Baruch Coll, Stat & CIS, One Baruch Way,Box 11-220, New York, NY 10010 USA
El Barmi, Hammou
[1
]
Malla, Ganesh
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cincinnati, Math Comp Geol & Phys, Clermont Coll, Batavia, OH 45103 USACUNY, Baruch Coll, Stat & CIS, One Baruch Way,Box 11-220, New York, NY 10010 USA
Malla, Ganesh
[2
]
Mukerjee, Hari
论文数: 0引用数: 0
h-index: 0
机构:
Wichita State Univ, Math & Stat, Wichita, KS 67260 USACUNY, Baruch Coll, Stat & CIS, One Baruch Way,Box 11-220, New York, NY 10010 USA
Mukerjee, Hari
[3
]
机构:
[1] CUNY, Baruch Coll, Stat & CIS, One Baruch Way,Box 11-220, New York, NY 10010 USA
[2] Univ Cincinnati, Math Comp Geol & Phys, Clermont Coll, Batavia, OH 45103 USA
[3] Wichita State Univ, Math & Stat, Wichita, KS 67260 USA
Star-shaped distribution functions;
uniform consistency;
convergence in distribution;
argmax theorem;
D O I:
10.1080/10485252.2016.1239827
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
A life distribution function (DF) F is said to be star-shaped if F(x)/x is nondecreasing on its support. This generalises the model of a convex DF, even allowing for jumps. The nonparametric maximum likelihood estimation is known to be inconsistent. We provide a uniformly strongly consistent least-squares estimator. We also derive the convergence in distribution of the estimator at a point where F(x)/x is increasing using the arg max theorem.
机构:
Tokyo Metropolitan Univ, Dept Math Sci, 1-1 Minami Osawa, Hachioji, Tokyo 1920397, JapanTokyo Metropolitan Univ, Dept Math Sci, 1-1 Minami Osawa, Hachioji, Tokyo 1920397, Japan