Estimation of a star-shaped distribution function

被引:0
|
作者
El Barmi, Hammou [1 ]
Malla, Ganesh [2 ]
Mukerjee, Hari [3 ]
机构
[1] CUNY, Baruch Coll, Stat & CIS, One Baruch Way,Box 11-220, New York, NY 10010 USA
[2] Univ Cincinnati, Math Comp Geol & Phys, Clermont Coll, Batavia, OH 45103 USA
[3] Wichita State Univ, Math & Stat, Wichita, KS 67260 USA
关键词
Star-shaped distribution functions; uniform consistency; convergence in distribution; argmax theorem;
D O I
10.1080/10485252.2016.1239827
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A life distribution function (DF) F is said to be star-shaped if F(x)/x is nondecreasing on its support. This generalises the model of a convex DF, even allowing for jumps. The nonparametric maximum likelihood estimation is known to be inconsistent. We provide a uniformly strongly consistent least-squares estimator. We also derive the convergence in distribution of the estimator at a point where F(x)/x is increasing using the arg max theorem.
引用
收藏
页码:22 / 39
页数:18
相关论文
共 50 条
  • [41] Star-shaped sets in normed spaces
    Boltyanski, V
    Martini, H
    Soltan, PS
    DISCRETE & COMPUTATIONAL GEOMETRY, 1996, 15 (01) : 63 - 71
  • [42] REGULAR STAR-SHAPED POLYDIMETHYLSILOXANE POLYMERS
    WILCZEK, L
    RUBINSZTAJN, S
    FORTUNIAK, W
    CHOJNOWSKI, J
    TVERDOCHLEBOVA, II
    VOLKOVA, RV
    BULLETIN OF THE POLISH ACADEMY OF SCIENCES-CHEMISTRY, 1989, 37 (1-2): : 91 - 97
  • [43] Invariant valuations on star-shaped sets
    Klain, DA
    ADVANCES IN MATHEMATICS, 1997, 125 (01) : 95 - 113
  • [44] Rigid star-shaped adamantane multipodes
    Heitz, W
    Meckel-Jonas, C
    Roth, MD
    Wendorff, JH
    ACTA POLYMERICA, 1998, 49 (01) : 35 - 44
  • [45] On weakly convex star-shaped polyhedra
    Schlenker, Jean-Marc
    DISCRETE MATHEMATICS, 2009, 309 (20) : 6139 - 6145
  • [46] STAR-SHAPED COAXIAL TRANSMISSION LINES
    ARORA, RK
    DASS, RL
    PROCEEDINGS OF THE IEEE, 1969, 57 (05) : 832 - &
  • [47] MAXIMAL LN STAR-SHAPED SETS
    TOPALE, OI
    MATHEMATICAL NOTES, 1982, 32 (1-2) : 537 - 539
  • [48] ON THE GEOMETRY OF STAR-SHAPED CURVES IN Rn
    Horocholyn, Stefan A.
    KYUSHU JOURNAL OF MATHEMATICS, 2019, 73 (01) : 123 - 144
  • [49] Star-shaped oscillations of Leidenfrost drops
    Ma, Xiaolei
    Lietor-Santos, Juan-Jose
    Burton, Justin C.
    PHYSICAL REVIEW FLUIDS, 2017, 2 (03):
  • [50] Wetting of a Multiarm Star-Shaped Molecule
    Glynos, Emmanouil
    Frieberg, Bradley
    Green, Peter F.
    PHYSICAL REVIEW LETTERS, 2011, 107 (11)