Optimal reservoir operation using multi-objective evolutionary algorithm

被引:192
作者
Reddy, M. Janga [1 ]
Kumar, D. Nagesh [1 ]
机构
[1] Indian Inst Sci, Dept Civil Engn, Bangalore 560012, Karnataka, India
关键词
multi-objective optimization; Genetic Algorithms; reservoir operation; Pareto front; irrigation; hydropower;
D O I
10.1007/s11269-005-9011-1
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper presents a Multi-objective Evolutionary Algorithm (MOEA) to derive a set of optimal operation policies for a multipurpose reservoir system. One of the main goals in multi-objective optimization is to find a set of well distributed optimal solutions along the Pareto front. Classical optimization methods often fail in attaining a good Pareto front. To overcome the drawbacks faced by the classical methods for Multi-objective Optimization Problems (MOOP), this study employs a population based search evolutionary algorithm namely Multi-objective Genetic Algorithm (MOGA) to generate a Pareto optimal set. The MOGA approach is applied to a realistic reservoir system, namely Bhadra Reservoir system, in India. The reservoir serves multiple purposes irrigation, hydropower generation and downstream water quality requirements. The results obtained using the proposed evolutionary algorithm is able to offer many alternative policies for the reservoir operator, giving flexibility to choose the best out of them. This study demonstrates the usefulness of MOGA for a real life multi-objective optimization problem.
引用
收藏
页码:861 / 878
页数:18
相关论文
共 50 条
  • [41] Efficient Hybrid Multi-Objective Evolutionary Algorithm
    Mohammed, Tareq Abed
    Bayat, Oguz
    Ucan, Osman N.
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2018, 18 (03): : 19 - 26
  • [42] Dynamical multi-objective optimization evolutionary algorithm
    Xiong, SW
    Li, F
    Wang, W
    Feng, C
    THIRD INTERNATIONAL SYMPOSIUM ON MULTISPECTRAL IMAGE PROCESSING AND PATTERN RECOGNITION, PTS 1 AND 2, 2003, 5286 : 418 - 421
  • [43] Hierarchical Flood Operation Rules Optimization Using Multi-Objective Cultured Evolutionary Algorithm Based on Decomposition
    Liu, Yongqi
    Qin, Hui
    Mo, Li
    Wang, Yongqiang
    Chen, Duan
    Pang, Shusen
    Yin, Xingli
    WATER RESOURCES MANAGEMENT, 2019, 33 (01) : 337 - 354
  • [44] Interval Robust Multi-Objective Evolutionary Algorithm
    Soares, G. L.
    Guimaraes, F. G.
    Maia, C. A.
    Vasconcelos, J. A.
    Jaulin, L.
    2009 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-5, 2009, : 1637 - +
  • [45] A hybrid multi-objective PSO-EDA algorithm for reservoir flood control operation
    Luo, Jungang
    Qi, Yutao
    Xie, Jiancang
    Zhang, Xiao
    APPLIED SOFT COMPUTING, 2015, 34 : 526 - 538
  • [46] New Dynamic Multi-Objective Constrained Optimization Evolutionary Algorithm
    Liu, Chun-An
    Wang, Yuping
    Ren, Aihong
    ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2015, 32 (05)
  • [47] Optimal Allocation of Distributed Generation Using Evolutionary Multi-objective Optimization
    Priya, P. Pon Ragothama
    Baskar, S.
    Selvi, S. Tamil
    Babulal, C. K.
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2023, 18 (02) : 869 - 886
  • [48] Multi-Objective Optimal Economic Emission Power Dispatch using Bat Algorithm
    Kumar, G. Ravi
    Rohit, Allaparthi
    Priyanka, G.
    Vamsipriya, G.
    2017 INNOVATIONS IN POWER AND ADVANCED COMPUTING TECHNOLOGIES (I-PACT), 2017,
  • [49] Optimal Allocation of Distributed Generation Using Evolutionary Multi-objective Optimization
    P. Pon Ragothama Priya
    S. Baskar
    S. Tamil Selvi
    C. K. Babulal
    Journal of Electrical Engineering & Technology, 2023, 18 : 869 - 886
  • [50] Multi-Objective Evolutionary Algorithm for PET Image Reconstruction: Concept
    Abouhawwash, Mohamed
    Alessio, Adam M.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (08) : 2142 - 2151