Global least squares method (Gl-LSQR) for solving general linear systems with several right-hand sides

被引:51
|
作者
Toutounian, F. [1 ]
Karimi, S. [1 ]
机构
[1] Ferdowsi Univ Mashhad, Dept Math, Mashhad, Iran
关键词
LSQR method; bidiagonalization; global methods; iterative methods; multiple right-hand sides;
D O I
10.1016/j.amc.2005.11.065
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a new method for solving general linear systems with several right-hand sides. This method is based on global least squares method and reduces the original matrix to the lower bidiagonal form. We derive a simple recurrence formula for generating the sequence of approximate solutions {X-K}. Some theoretical properties of the new method are discussed and we also show that how this method can be implemented for the sylvester equation. Finally, some numerical experiments on test matrices are presented to show the efficiency of the new method. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:452 / 460
页数:9
相关论文
共 50 条
  • [1] Global LSMR(Gl-LSMR) method for solving general linear systems with several right-hand sides
    Mojarrab, M.
    Toutounian, F.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 321 : 78 - 89
  • [2] The block least squares method for solving nonsymmetric linear systems with multiple right-hand sides
    Karimi, S.
    Toutounian, F.
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 177 (02) : 852 - 862
  • [3] A seed method for solving nonsymmetric linear systems with multiple right-hand sides
    Gu, GD
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2002, 79 (03) : 307 - 326
  • [4] The block CMRH method for solving nonsymmetric linear systems with multiple right-hand sides
    Amini, S.
    Toutounian, F.
    Gachpazan, M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 337 : 166 - 174
  • [5] Direct global Lanczos method for large linear systems with multiple right-hand sides
    S. Elgharbi
    M. Esghir
    O. Ibrihich
    B. Abouzaid
    M. Essaouini
    S. El Hajji
    Afrika Matematika, 2020, 31 : 57 - 69
  • [6] Direct global Lanczos method for large linear systems with multiple right-hand sides
    Elgharbi, S.
    Esghir, M.
    Ibrihich, O.
    Abouzaid, B.
    Essaouini, M.
    El Hajji, S.
    AFRIKA MATEMATIKA, 2020, 31 (01) : 57 - 69
  • [7] Condition Numbers of the Least Squares Problems with Multiple Right-Hand Sides
    Meng, Lingsheng
    Zheng, Bing
    FILOMAT, 2019, 33 (06) : 1667 - 1676
  • [8] Enlarged GMRES for solving linear systems with one or multiple right-hand sides
    Al Daas, Hussam
    Grigori, Laura
    Henon, Pascal
    Ricoux, Philippe
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2019, 39 (04) : 1924 - 1956
  • [9] The block LSMR method: a novel efficient algorithm for solving non-symmetric linear systems with multiple right-hand sides
    Toutounian, F.
    Mojarrab, M.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2015, 39 (A1): : 69 - 78
  • [10] Analysis of projection methods for solving linear systems with multiple right-hand sides
    Chan, TF
    Wan, WL
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1997, 18 (06): : 1698 - 1721