Systematics in the metal-insulator transition temperatures in vanadium oxides

被引:15
作者
Fisher, B. [1 ]
Genossar, J. [1 ]
Reisner, G. M. [1 ]
机构
[1] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel
关键词
Metal-semiconductor; Electron-electron interactions; Electron-phonon interactions; Phase transitions; ELECTRICAL-CONDUCTIVITY; SINGLE-CRYSTALS; TRANSPORT; FEATURES; GROWTH; PHASE; V9O17;
D O I
10.1016/j.ssc.2015.10.015
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Nine of the known vanadium oxides, VO2-1/n (n - a positive or negative integer) with n=2-6,8,9, infinity and -6, undergo metal-insulator transitions accompanied by structural transitions, at various temperatures T-MIT (V7O13 is metallic above T=0). Among the persistent efforts to determine the driving force (s) of these transitions, electron-electron (Mott-like) and electron-phonon (Peierls-like) interactions, there were several attempts to find systematics in T-MIT as function of n. Here we present an unexpectedly simple and illuminating systematics that holds for positive n: if T-MIT is the absolute value of the difference between T-M(n) and T-P(n), which represent the contributions of electron-electron and electronphonon interactions, respectively, all data points of T-M-T-P versus 1/n lie on, or close to, two simple straight lines; one is T-M-T-P =T-infinity(7/n 1) for V3O5, V4O7, V5O9, V7O13, V8O15, V9O17 and VO2 and the other is T-M-T-P=T-infinity(3/n-1) for V2O3, V6O11 and VO2. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:29 / 32
页数:4
相关论文
共 50 条
[21]   Silicon waveguide optical modulator driven by metal-insulator transition of vanadium dioxide cladding layer [J].
Shibuya, Keisuke ;
Atsumi, Yuki ;
Yoshida, Tomoya ;
Sakakibara, Youichi ;
Mori, Masahiko ;
Sawa, Akihito .
OPTICS EXPRESS, 2019, 27 (04) :4147-4156
[22]   Correlating the Energetics and Atomic Motions of the Metal-Insulator Transition of M1 Vanadium Dioxide [J].
Booth, Jamie M. ;
Drumm, Daniel W. ;
Casey, Phil S. ;
Smith, Jackson S. ;
Seeber, Aaron J. ;
Bhargava, Suresh K. ;
Russo, Salvy P. .
SCIENTIFIC REPORTS, 2016, 6
[23]   Epitaxial suppression of the metal-insulator transition in CrN [J].
Zhang, X. Y. ;
Chawla, J. S. ;
Deng, R. P. ;
Gall, D. .
PHYSICAL REVIEW B, 2011, 84 (07)
[24]   Microscopical theory of the Smirnov metal-insulator transition [J].
Los', VF ;
Repetsky, SP .
METALLOFIZIKA I NOVEISHIE TEKHNOLOGII, 1999, 21 (11) :19-30
[25]   Metal-Insulator Transition from Graphene to Graphane [J].
Ezawa, Motohiko .
NANOMATERIALS AND NANOTECHNOLOGY, 2013, 3
[26]   Metal-insulator transition induced by random dipoles [J].
Larcher, M. ;
Menotti, C. ;
Tanatar, B. ;
Vignolo, P. .
PHYSICAL REVIEW A, 2013, 88 (01)
[27]   Metal-insulator transition in doped polymerized polyaniline [J].
Padilla, R. A. ;
Pacheco, M. A. ;
Anda, E., V .
PHYSICAL REVIEW B, 2019, 100 (11)
[28]   Metal-insulator transition in lead yttrium ruthenate [J].
Akhbarifar, Sepideh ;
Lutze, Werner ;
Mecholsky, Nicholas A. ;
Pegg, Ian L. .
MATERIALS CHEMISTRY AND PHYSICS, 2021, 260
[29]   Switchable Metal-Insulator Phase Transition Metamaterials [J].
Hajisalem, Ghazal ;
Nezami, Mohammadreza S. ;
Gordon, Reuven .
NANO LETTERS, 2017, 17 (05) :2940-2944
[30]   Predicting the Onset of Metal-Insulator Transitions in Transition Metal Oxides-A First Step in Designing Neuromorphic Devices [J].
Zhang, Shenli ;
Vo, Hien ;
Galli, Giulia .
CHEMISTRY OF MATERIALS, 2021, 33 (09) :3187-3195