Copper Complexes as Bioinspired Models for Lytic Polysaccharide Monooxygenases

被引:36
|
作者
Concia, Alda Lisa [1 ]
Beccia, Maria Rosa [2 ]
Orio, Maylis [1 ]
Ferre, Francine Terra [3 ]
Scarpellini, Marciela [3 ]
Biaso, Frederic [2 ]
Guigliarelli, Bruno [2 ]
Reglier, Marius [1 ]
Simaan, A. Jalila [1 ]
机构
[1] Aix Marseille Univ, CNRS, iSm2, Cent Marseille, Marseille, France
[2] Aix Marseille Univ, CNRS, BIP, Marseille, France
[3] Univ Fed Rio de Janeiro, Inst Quim, Ilha Cidade Univ, BR-21941490 Rio De Janeiro, Brazil
关键词
CHEMISTRY; OXIDATION; DEGRADATION; MECHANISMS; CONVERSION; DINUCLEAR; CELLULOSE; RELEVANT; CLEAVAGE;
D O I
10.1021/acs.inorgchem.6b02165
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
We report here two copper complexes as first functional models for lytic polysaccharide monooxygenases, mononuclear copper-containing enzymes involved in recalcitrant polysaccharide breakdown. These complexes feature structural and spectroscopic properties similar to those of the enzyme. In addition, they catalyze oxidative cleavage of the model substrate p-nitrophenyl-beta-D-glucopyranoside. More importantly, a particularly stable copper(II) hydroperoxide intermediate is detected in the reaction conditions.
引用
收藏
页码:1023 / 1026
页数:4
相关论文
共 50 条
  • [1] Polysaccharide degradation by lytic polysaccharide monooxygenases
    Forsberg, Zarah
    Sorlie, Morten
    Petrovic, Dejan
    Courtade, Gaston
    Aachmann, Finn L.
    Vaaje-Kolstad, Gustav
    Bissaro, Bastien
    Rohr, Asmund K.
    Eijsink, Vincent G. H.
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2019, 59 : 54 - 64
  • [2] Peptide-based chemical models for lytic polysaccharide monooxygenases
    Hassoon, Azza A.
    Szorcsik, Attila
    Fulop, Livia
    Papp, Zita, I
    May, Nora, V
    Gajda, Tamas
    DALTON TRANSACTIONS, 2022, 51 (45) : 17241 - 17254
  • [3] Structure and function of lytic polysaccharide monooxygenases
    Urresti, Saioa
    Hemsworth, Glyn R.
    Screeton, Hannah C.
    Walton, Paul H.
    Davies, Gideon J.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2015, 71 : S225 - S225
  • [4] On the catalytic mechanisms of lytic polysaccharide monooxygenases
    Walton, Paul H.
    Davies, Gideon J.
    CURRENT OPINION IN CHEMICAL BIOLOGY, 2016, 31 : 195 - 207
  • [5] Lytic Polysaccharide Monooxygenases in Biomass Conversion
    Hemsworth, Glyn R.
    Johnston, Esther M.
    Davies, Gideon J.
    Walton, Paul H.
    TRENDS IN BIOTECHNOLOGY, 2015, 33 (12) : 747 - 761
  • [6] Multiscale Modelling of Lytic Polysaccharide Monooxygenases
    Hedegard, Erik D.
    Ryde, Ulf
    ACS OMEGA, 2017, 2 (02): : 536 - 545
  • [7] Molecular mechanism of lytic polysaccharide monooxygenases
    Hedegard, Erik Donovan
    Ryde, Ulf
    CHEMICAL SCIENCE, 2018, 9 (15) : 3866 - 3880
  • [8] Structural diversity of lytic polysaccharide monooxygenases
    Vaaje-Kolstad, Gustav
    Forsberg, Zarah
    Loose, Jennifer S. M.
    Bissaro, Bastien
    Eijsink, Vincent G. H.
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2017, 44 : 67 - 76
  • [9] Engineering lytic polysaccharide monooxygenases (LPMOs)
    Forsberg, Zarah
    Stepnov, Anton A.
    Naerdal, Guro Kruge
    Klinkenberg, Geir
    Eijsink, Vincent G. H.
    ENZYME ENGINEERING AND EVOLUTION: SPECIFIC ENZYME APPLICATIONS, 2020, 644 : 1 - 34
  • [10] Structures of lytic polysaccharide monooxygenases and their interaction with polysaccharide substrates
    Lo Leggio, Leila
    Frandsen, Kristian E. H.
    Poulsen, Jens-Christian N.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2016, 72 : S31 - S32