A distinct abundant group of microbial rhodopsins discovered using functional metagenomics

被引:169
作者
Pushkarev, Alina [1 ]
Inoue, Keiichi [2 ,3 ,4 ,5 ]
Larom, Shirley [1 ]
Flores-Uribe, Jose [1 ]
Singh, Manish [2 ]
Konno, Masae [2 ]
Tomida, Sahoko [2 ]
Ito, Shota [2 ]
Nakamura, Ryoko [2 ]
Tsunoda, Satoshi P. [2 ,5 ]
Philosof, Alon [1 ]
Sharon, Itai [6 ,7 ]
Yutin, Natalya [8 ]
Koonin, Eugene V. [8 ]
Kandori, Hideki [2 ,3 ]
Beja, Oded [1 ]
机构
[1] Technion Israel Inst Technol, Fac Biol, Haifa, Israel
[2] Nagoya Inst Technol, Dept Life Sci & Appl Chem, Nagoya, Aichi, Japan
[3] Nagoya Inst Technol, OptoBioTechnol Res Ctr, Nagoya, Aichi, Japan
[4] Nagoya Inst Technol, Frontier Res Inst Mat Sci, Nagoya, Aichi, Japan
[5] Japan Sci & Technol Agcy, PRESTO, Kawaguchi, Saitama, Japan
[6] Migal Galilee Res Inst, Kiryat Shmona, Israel
[7] Tel Hai Coll, Upper Galilee, Israel
[8] NIH, Natl Ctr Biotechnol Informat, Natl Lib Med, Bldg 10, Bethesda, MD 20892 USA
基金
以色列科学基金会;
关键词
MEMBRANE-PROTEIN TOPOLOGY; MARINE-BACTERIA; BETA-LACTAMASE; FRESH-WATER; LIGHT; SEA; PREDICTION; SEQUENCE; GENOME; PUMP;
D O I
10.1038/s41586-018-0225-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Many organisms capture or sense sunlight using rhodopsin pigments(1,2), which are integral membrane proteins that bind retinal chromophores. Rhodopsins comprise two distinct protein families(1), type-1 (microbial rhodopsins) and type-2 (animal rhodopsins). The two families share similar topologies and contain seven transmembrane helices that form a pocket in which retinal is linked covalently as a protonated Schiff base to a lysine at the seventh transmembrane helix(2,3). Type-1 and type-2 rhodopsins show little or no sequence similarity to each other, as a consequence of extensive divergence from a common ancestor or convergent evolution of similar structures1. Here we report a previously unknown and diverse family of rhodopsins-which we term the heliorhodopsins-that we identified using functional metagenomics and that are distantly related to type-1 rhodopsins. Heliorhodopsins are embedded in the membrane with their N termini facing the cell cytoplasm, an orientation that is opposite to that of type-1 or type-2 rhodopsins. Heliorhodopsins show photocycles that are longer than one second, which is suggestive of light-sensory activity. Heliorhodopsin photocycles accompany retinal isomerization and proton transfer, as in type-1 and type-2 rhodopsins, but protons are never released from the protein, even transiently. Heliorhodopsins are abundant and distributed globally; we detected them in Archaea, Bacteria, Eukarya and their viruses. Our findings reveal a previously unknown family of light-sensing rhodopsins that are widespread in the microbial world.
引用
收藏
页码:595 / +
页数:21
相关论文
共 57 条
[21]  
Gibson DG, 2009, NAT METHODS, V6, P343, DOI [10.1038/nmeth.1318, 10.1038/NMETH.1318]
[22]   Microbial Rhodopsins: Diversity, Mechanisms, and Optogenetic Applications [J].
Govorunova, Elena G. ;
Sineshchekov, Oleg A. ;
Li, Hai ;
Spudich, John L. .
ANNUAL REVIEW OF BIOCHEMISTRY, VOL 86, 2017, 86 :845-872
[23]   New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0 [J].
Guindon, Stephane ;
Dufayard, Jean-Francois ;
Lefort, Vincent ;
Anisimova, Maria ;
Hordijk, Wim ;
Gascuel, Olivier .
SYSTEMATIC BIOLOGY, 2010, 59 (03) :307-321
[24]   A natural light-driven inward proton pump [J].
Inoue, Keiichi ;
Ito, Shota ;
Kato, Yoshitaka ;
Nomura, Yurika ;
Shibata, Mikihiro ;
Uchihashi, Takayuki ;
Tsunoda, Satoshi P. ;
Kandori, Hideki .
NATURE COMMUNICATIONS, 2016, 7
[25]   Spectroscopic Study of a Light-Driven Chloride Ion Pump from Marine Bacteria [J].
Inoue, Keiichi ;
Koua, Faisal Hammad Mekky ;
Kato, Yoshitaka ;
Abe-Yoshizumi, Rei ;
Kandori, Hideki .
JOURNAL OF PHYSICAL CHEMISTRY B, 2014, 118 (38) :11190-11199
[26]   A light-driven sodium ion pump in marine bacteria [J].
Inoue, Keiichi ;
Ono, Hikaru ;
Abe-Yoshizumi, Rei ;
Yoshizawa, Susumu ;
Ito, Hiroyasu ;
Kogure, Kazuhiro ;
Kandori, Hideki .
NATURE COMMUNICATIONS, 2013, 4
[27]   A combined transmembrane topology and signal peptide prediction method [J].
Käll, L ;
Krogh, A ;
Sonnhammer, ELL .
JOURNAL OF MOLECULAR BIOLOGY, 2004, 338 (05) :1027-1036
[28]   Structural basis for Na+ transport mechanism by a light-driven Na+ pump [J].
Kato, Hideaki E. ;
Inoue, Keiichi ;
Abe-Yoshizumi, Rei ;
Kato, Yoshitaka ;
Ono, Hikaru ;
Konno, Masae ;
Hososhima, Shoko ;
Ishizuka, Toru ;
Hoque, Mohammad Razuanul ;
Kunitomo, Hirofumi ;
Ito, Jumpei ;
Yoshizawa, Susumu ;
Yamashita, Keitaro ;
Takemoto, Mizuki ;
Nishizawa, Tomohiro ;
Taniguchi, Reiya ;
Kogure, Kazuhiro ;
Maturana, Andres D. ;
Iino, Yuichi ;
Yawo, Hiromu ;
Ishitani, Ryuichiro ;
Kandori, Hideki ;
Nureki, Osamu .
NATURE, 2015, 521 (7550) :48-U347
[29]   FTIR study of the photoisomerization processes in the 13-cis and all-trans forms of Anabaena sensory rhodopsin at 77 K [J].
Kawanabe, A ;
Furutani, Y ;
Jung, KH ;
Kandori, H .
BIOCHEMISTRY, 2006, 45 (14) :4362-4370
[30]   The Phyre2 web portal for protein modeling, prediction and analysis [J].
Kelley, Lawrence A. ;
Mezulis, Stefans ;
Yates, Christopher M. ;
Wass, Mark N. ;
Sternberg, Michael J. E. .
NATURE PROTOCOLS, 2015, 10 (06) :845-858