P-orderings of finite subsets of Dedekind domains

被引:4
|
作者
Johnson, Keith [1 ]
机构
[1] Dalhousie Univ, Dept Math, Halifax, NS B3H 4R2, Canada
关键词
P-ordering; P-sequence; Dedekind domain; INTEGER-VALUED POLYNOMIALS; SEQUENCES;
D O I
10.1007/s10801-008-0157-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If R is a Dedekind domain, P a prime ideal of R and S subset of R a finite subset then a P-ordering of S, as introduced by M. Bhargava in (J. Reine Angew. Math. 490: 101-127, 1997), is an ordering {a(i)}(i=1)(m) of the elements of S with the property that, for each 1 < i <= m, the choice of a(i) minimizes the P-adic valuation of Pi(j<i) (s - a(j)) over elements s is an element of S. If S, S' are two finite subsets of R of the same cardinality then a bijection phi : S -> S' is a P-ordering equivalence if it preserves P-orderings. In this paper we give upper and lower bounds for the number of distinct P-orderings a finite set can have in terms of its cardinality and give an upper bound on the number of P-ordering equivalence classes of a given cardinality.
引用
收藏
页码:233 / 253
页数:21
相关论文
共 50 条
  • [21] A Menon-type identity with many tuples of group of units in residually finite Dedekind domains
    Li, Yan
    Kim, Daeyeoul
    JOURNAL OF NUMBER THEORY, 2017, 175 : 42 - 50
  • [22] Intrinsic Factorization of Ideals in Dedekind Domains
    Darkey-Mensah, Mawunyo Kofi
    Koprowski, Przemysaw
    FUNDAMENTA INFORMATICAE, 2019, 170 (04) : 325 - 338
  • [23] Fractionary fuzzy ideals and Dedekind domains
    Lee, KH
    Mordeson, JN
    FUZZY SETS AND SYSTEMS, 1998, 99 (01) : 105 - 110
  • [24] Intrinsic factorization of ideals in Dedekind domains
    Darkey-Mensah, Mawunyo Kofi
    Koprowski, Przemyslaw
    ACM COMMUNICATIONS IN COMPUTER ALGEBRA, 2019, 53 (03): : 107 - 109
  • [25] Sets of lengths of factorizations of integer-valued polynomials on Dedekind domains with finite residue fields
    Frisch, Sophie
    Nakato, Sarah
    Rissner, Roswitha
    JOURNAL OF ALGEBRA, 2019, 528 : 231 - 249
  • [26] Weakly based modules over Dedekind domains
    Hrbek, Michal
    Ruzicka, Pavel
    JOURNAL OF ALGEBRA, 2014, 399 : 251 - 268
  • [27] Comultiplication modules over a pullback of Dedekind domains
    Reza Ebrahimi Atani
    Shahabaddin Ebrahimi Atani
    Czechoslovak Mathematical Journal, 2009, 59 : 1103 - 1114
  • [28] Comultiplication modules over a pullback of Dedekind domains
    Atani, Reza Ebrahimi
    Atani, Shahabaddin Ebrahimi
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2009, 59 (04) : 1103 - 1114
  • [29] Self-pure-generators over Dedekind domains
    Breaz, Simion
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2019, 223 (12) : 5176 - 5184
  • [30] Adjunction of pth roots to Dedekind domains and injective modules
    Nossem, N
    COMMUNICATIONS IN ALGEBRA, 2003, 31 (01) : 309 - 322