Poly(ethylene oxide)-Based Electrolytes for Solid-State Potassium Metal Batteries with a Prussian Blue Positive Electrode

被引:22
|
作者
Khudyshkina, Anna D. [1 ]
Morozova, Polina A. [2 ]
Butzelaar, Andreas J. [3 ]
Hoffmann, Maxi [3 ]
Wilhelm, Manfred [3 ]
Theato, Patrick [3 ,4 ]
Fedotov, Stanislav S. [2 ]
Jeschull, Fabian [1 ]
机构
[1] Karlsruhe Inst Technol KIT, Inst Appl Mat Energy Storage Syst IAM ESS, D-76344 Eggenstein Leopoldshafen, Germany
[2] Skolkovo Inst Sci & Technol, Ctr Energy Sci & Technol, Moscow 143025, Russia
[3] Karlsruhe Inst Technol KIT, Inst Chem Technol & Polymer Chem ITCP, D-76131 Karlsruhe, Germany
[4] Karlsruhe Inst Technol KIT, Soft Matter Synth Lab, Inst Biol Interfaces IBG 3 3, D-76344 Eggenstein Leopoldshafen, Germany
基金
俄罗斯基础研究基金会;
关键词
potassium battery; solid polymer electrolytes; SPEs; polyethylene oxide; PEO; KTFSI; Prussian blue analogue; PBA; POLYMER ELECTROLYTES; IONIC-CONDUCTIVITY; GLASS-TRANSITION; MOLECULAR-WEIGHT; CATIONIC TRANSPORT; HOST MATERIALS; K-ION; PEO; TEMPERATURE; BEHAVIOR;
D O I
10.1021/acsapm.2c00014
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Potassium-ion batteries are an emerging post-lithium technology that are considered ecologically and economically benign in terms of raw materials' abundance and cost. Conventional cell configurations employ flammable liquid electrolytes that impose safety concerns, as well as considerable degrees of irreversible side reactions at the reactive electrode interfaces (especially against potassium metal), resulting in a rapid capacity fade. While being inherently safer, solid polymer electrolytes may present a solution to capacity losses owing to their broad electrochemical stability window. Herein, we present for the first time a stable solid-state potassium battery composed of a potassium metal negative electrode, a Prussian blue analogue K2Fe[Fe(CN)(6)] positive electrode, and a poly(ethylene oxide)-potassium bis(trifluoromethanesulfonyl)imide polymer electrolyte. At an elevated operating temperature of 55 degrees C, the solid-state battery achieved a superior capacity retention of 90% over 50 cycles in direct comparison to a conventional carbonate-based liquid electrolyte operated at ambient temperature with a capacity retention of only 66% over the same cycle number interval.
引用
收藏
页码:2734 / 2746
页数:13
相关论文
共 50 条
  • [21] Effect of Organic Functional Groups on Poly(ethylene oxide) Electrolytes for High-Performance Solid-State Lithium-Metal Batteries
    Zhang, Zhao
    Cai, Lucheng
    Huang, Pengfei
    Zhang, Zhihao
    Ying, Hangjun
    Han, Gaorong
    Han, Wei-Qiang
    ACS APPLIED ENGINEERING MATERIALS, 2023, 1 (08): : 2163 - 2173
  • [22] Solid-State Electrolytes for Sodium Metal Batteries
    Li, Zhaopeng
    Liu, Pei
    Zhu, Kunjie
    Zhang, Zhaoyuan
    Si, Yuchang
    Wang, Yijing
    Jiao, Lifang
    ENERGY & FUELS, 2021, 35 (11) : 9063 - 9079
  • [23] Poly(Ionic Liquid) Electrolytes at an Extreme Salt Concentration for Solid-State Batteries
    Kondou, Shinji
    Abdullah, Mohanad
    Popov, Ivan
    Martins, Murillo L.
    O'Dell, Luke A.
    Ueda, Hiroyuki
    Makhlooghiazad, Faezeh
    Nakanishi, Azusa
    Sudoh, Taku
    Ueno, Kazuhide
    Watanabe, Masayoshi
    Howlett, Patrick
    Zhang, Heng
    Armand, Michel
    Sokolov, Alexei P.
    Forsyth, Maria
    Chen, Fangfang
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024, 146 (48) : 33169 - 33178
  • [24] A Chitosan/Poly(ethylene oxide)-Based Hybrid Polymer Composite Electrolyte Suitable for Solid-State Lithium Metal Batteries
    Ai, Shun
    Wang, Tianyi
    Li, Tao
    Wan, Yuanxin
    Xu, Xiaoqian
    Lu, Hongyan
    Qu, Tengfei
    Luo, Shaochuan
    Jiang, Jing
    Yu, Xianghua
    Zhou, Dongshan
    Li, Liang
    CHEMISTRYSELECT, 2020, 5 (10): : 2878 - 2885
  • [25] Polymer electrolytes and interfaces in solid-state lithium metal batteries
    Ding, Peipei
    Lin, Zhiyuan
    Guo, Xianwei
    Wu, Lingqiao
    Wang, Yongtao
    Guo, Hongxia
    Li, Liangliang
    Yu, Haijun
    MATERIALS TODAY, 2021, 51 : 449 - 474
  • [26] Poly(ethylene oxide)-Based Composite Electrolyte with Lithium-Doped High-Entropy Oxide Ceramic Enabled Robust Solid-State Lithium-Metal Batteries
    Liu, Weijie
    Jiang, Jianbo
    Yang, Zhihao
    Liu, Yang
    Yang, Zhengfei
    Bu, Manman
    Liao, Shuangxiong
    Wu, Weiying
    Huang, Tieqi
    Sang, Shangbin
    Liu, Hongtao
    CHEMISTRY-AN ASIAN JOURNAL, 2022, 17 (22)
  • [27] Evaluation and Improvement of the Stability of Poly(ethylene oxide)-based Solid-state Batteries with High-Voltage Cathodes
    Yusim, Yuriy
    Trevisanello, Enrico
    Ruess, Raffael
    Richter, Felix H.
    Mayer, Alexander
    Bresser, Dominic
    Passerini, Stefano
    Janek, Juergen
    Henss, Anja
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (12)
  • [28] Influence of Molecular Weight and Lithium Bis(trifluoromethanesulfonyl)imide on the Thermal Processability of Poly(ethylene oxide) for Solid-State Electrolytes
    Platen, Katharina
    Langer, Frederieke
    Bayer, Roland
    Hollmann, Robert
    Schwenzel, Julian
    Busse, Matthias
    POLYMERS, 2023, 15 (16)
  • [29] Challenges, fabrications and horizons of oxide solid electrolytes for solid-state lithium batteries
    Wei, Ran
    Chen, Shaojie
    Gao, Tianyi
    Liu, Wei
    NANO SELECT, 2021, 2 (12): : 2256 - 2274
  • [30] Embedding of Laser Generated TiO2 in Poly(ethylene oxide) with Boosted Li+ Conduction for Solid-State Lithium Metal Batteries
    Su, Yanxia
    Mu, Zheshen
    Qiu, Yuqian
    Jiang, Guangshen
    Shenouda, Atef
    Zhang, Xinren
    Xu, Fei
    Wang, Hongqiang
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (48) : 55713 - 55722