Spiking Neural Networks for Gesture Recognition Using Time Domain Radar Data

被引:0
作者
Shaaban, Ahmed [1 ,2 ]
Furtner, Wolfgang [1 ]
Weigel, Robert [2 ]
Lurz, Fabian [2 ]
机构
[1] Infineon Technol AG, Munich, Germany
[2] Univ Erlangen Nurnberg, Inst Elect Engn, Erlangen, Germany
来源
2022 19TH EUROPEAN RADAR CONFERENCE (EURAD) | 2022年
关键词
Spiking Neural Networks; Radar Gesture Recognition; Convolutional Neural Networks; FMCW Radar; Raw Radar Data; Time Domain Radar Data;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Gesture recognition using luminance invariant radar sensors is vital due to its extensive use in human-machine interfaces. However, the necessity for computationally expensive radar data pre-processing steps represented by fast Fourier transforms to get range and Doppler features are regarded as a contemporary concern. In this work, we present a solution for gesture recognition that relies on time-domain radar data applied to an event-driven, sparse, and end-to-end trained spiking neural network architecture. Using the proposed solution, it is possible to discriminate between 10 different gestures in a gesture dataset recorded using a 60 GHz frequency-modulated continuous-wave radar sensor, with a mean test accuracy of 93.1%.
引用
收藏
页码:33 / 36
页数:4
相关论文
共 50 条
[41]   Neuromorphic Data Augmentation for Training Spiking Neural Networks [J].
Li, Yuhang ;
Kim, Youngeun ;
Park, Hyoungseob ;
Geller, Tamar ;
Panda, Priyadarshini .
COMPUTER VISION, ECCV 2022, PT VII, 2022, 13667 :631-649
[42]   Energy-efficient event pattern recognition in wireless sensor networks using multilayer spiking neural networks [J].
Kasi, Shahrukh Khan ;
Das, Saptarshi ;
Biswas, Subir .
WIRELESS NETWORKS, 2021, 27 (03) :2039-2054
[43]   Energy-efficient event pattern recognition in wireless sensor networks using multilayer spiking neural networks [J].
Shahrukh Khan Kasi ;
Saptarshi Das ;
Subir Biswas .
Wireless Networks, 2021, 27 :2039-2054
[44]   Investigation of Spiking Neural Networks for Modulation Recognition using Spike-Timing-Dependent Plasticity [J].
Knoblock, Eric J. ;
Bahrami, Hamid R. .
2019 IEEE COGNITIVE COMMUNICATIONS FOR AEROSPACE APPLICATIONS WORKSHOP (CCAAW), 2019,
[45]   Attentional Bias Pattern Recognition in Spiking Neural Networks from Spatio-Temporal EEG Data [J].
Doborjeh, Zohreh Gholami ;
Doborjeh, Maryam G. ;
Kasabov, Nikola .
COGNITIVE COMPUTATION, 2018, 10 (01) :35-48
[46]   Attentional Bias Pattern Recognition in Spiking Neural Networks from Spatio-Temporal EEG Data [J].
Zohreh Gholami Doborjeh ;
Maryam G. Doborjeh ;
Nikola Kasabov .
Cognitive Computation, 2018, 10 :35-48
[47]   Object classification on raw radar data using convolutional neural networks [J].
Han, Heejae ;
Kim, Jeonghwan ;
Park, Junyoung ;
Lee, Yujin ;
Jo, Hyunwoo ;
Park, Yonghyeon ;
Matson, Eric T. ;
Park, Seongha .
2019 IEEE SENSORS APPLICATIONS SYMPOSIUM (SAS), 2019,
[48]   24 GHz FMCW Radar System for Real-time Hand Gesture Recognition Using LSTM [J].
Suho, Jun Seuk ;
Ryu, Sijung ;
Han, Byunghun ;
Choi, Jaewoo ;
Kim, Jong-Hwan ;
Hong, Songcheol .
2018 ASIA-PACIFIC MICROWAVE CONFERENCE PROCEEDINGS (APMC), 2018, :860-862
[49]   Learning to Classify Faster Using Spiking Neural Networks [J].
Machingal, Pranav ;
Thousif ;
Dora, Shirin ;
Sundaram, Suresh ;
Meng, Qinggang .
2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
[50]   Neuromorphic Sentiment Analysis Using Spiking Neural Networks [J].
Chunduri, Raghavendra K. ;
Perera, Darshika G. .
SENSORS, 2023, 23 (18)