Spiking Neural Networks for Gesture Recognition Using Time Domain Radar Data

被引:0
作者
Shaaban, Ahmed [1 ,2 ]
Furtner, Wolfgang [1 ]
Weigel, Robert [2 ]
Lurz, Fabian [2 ]
机构
[1] Infineon Technol AG, Munich, Germany
[2] Univ Erlangen Nurnberg, Inst Elect Engn, Erlangen, Germany
来源
2022 19TH EUROPEAN RADAR CONFERENCE (EURAD) | 2022年
关键词
Spiking Neural Networks; Radar Gesture Recognition; Convolutional Neural Networks; FMCW Radar; Raw Radar Data; Time Domain Radar Data;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Gesture recognition using luminance invariant radar sensors is vital due to its extensive use in human-machine interfaces. However, the necessity for computationally expensive radar data pre-processing steps represented by fast Fourier transforms to get range and Doppler features are regarded as a contemporary concern. In this work, we present a solution for gesture recognition that relies on time-domain radar data applied to an event-driven, sparse, and end-to-end trained spiking neural network architecture. Using the proposed solution, it is possible to discriminate between 10 different gestures in a gesture dataset recorded using a 60 GHz frequency-modulated continuous-wave radar sensor, with a mean test accuracy of 93.1%.
引用
收藏
页码:33 / 36
页数:4
相关论文
共 50 条
[21]   Applications of Spiking Neural Networks in Visual Place Recognition [J].
Hussaini, Somayeh ;
Milford, Michael ;
Fischer, Tobias .
IEEE TRANSACTIONS ON ROBOTICS, 2025, 41 :518-537
[22]   Adaptive spiking neural networks for audiovisual pattern recognition [J].
Wysoski, Simei Gomes ;
Benuskova, Lubica ;
Kasabov, Nikola .
NEURAL INFORMATION PROCESSING, PART II, 2008, 4985 :406-415
[23]   Trajectory Gesture Recognition Using Convolutional Neural Networks in Intelligent Teaching Interface [J].
Qiao, Yu ;
Feng, Zhi-quan ;
Zhou, Xiao-yan ;
Xu, Tao ;
Yang, Xiao-hui .
2018 INTERNATIONAL CONFERENCE ON COMPUTER, COMMUNICATION AND NETWORK TECHNOLOGY (CCNT 2018), 2018, 291 :458-464
[24]   Large-scale Isolated Gesture Recognition Using Convolutional Neural Networks [J].
Wang, Pichao ;
Li, Wanqing ;
Liu, Song ;
Gao, Zhimin ;
Tang, Chang ;
Ogunbona, Philip .
2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, :7-12
[25]   Automotive Radar Processing With Spiking Neural Networks: Concepts and Challenges [J].
Vogginger, Bernhard ;
Kreutz, Felix ;
Lopez-Randulfe, Javier ;
Liu, Chen ;
Dietrich, Robin ;
Gonzalez, Hector A. ;
Scholz, Daniel ;
Reeb, Nico ;
Auge, Daniel ;
Hille, Julian ;
Arsalan, Muhammad ;
Mirus, Florian ;
Grassmann, Cyprian ;
Knoll, Alois ;
Mayr, Christian .
FRONTIERS IN NEUROSCIENCE, 2022, 16
[26]   Spiking Neural Networks Using Backpropagation [J].
Syed, Tehreem ;
Kakani, Vijay ;
Cui, Xuenan ;
Kim, Hakil .
2021 IEEE REGION 10 SYMPOSIUM (TENSYMP), 2021,
[27]   Hand gesture recognition based on convolutional neural networks [J].
Hu, Yu-lu ;
Wang, Lian-ming .
LIDAR IMAGING DETECTION AND TARGET RECOGNITION 2017, 2017, 10605
[28]   The Heidelberg Spiking Data Sets for the Systematic Evaluation of Spiking Neural Networks [J].
Cramer, Benjamin ;
Stradmann, Yannik ;
Schemmel, Johannes ;
Zenke, Friedemann .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (07) :2744-2757
[29]   Spiking Deep Convolutional Neural Networks for Energy-Efficient Object Recognition [J].
Yongqiang Cao ;
Yang Chen ;
Deepak Khosla .
International Journal of Computer Vision, 2015, 113 :54-66
[30]   Spiking Deep Convolutional Neural Networks for Energy-Efficient Object Recognition [J].
Cao, Yongqiang ;
Chen, Yang ;
Khosla, Deepak .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2015, 113 (01) :54-66