Transversal hypergraphs to perfect matchings in bipartite graphs: Characterization and generation algorithms

被引:10
作者
Boros, Endre
Elbassioni, Khaled
Gurvich, Vladimir
机构
[1] Rutgers State Univ, RUTCOR, Piscataway, NJ 08854 USA
[2] Max Planck Inst Informat, Saarbrucken, Germany
关键词
bipartite graphs; perfect matchings; blockers; generation algorithms; matchable graphs;
D O I
10.1002/jgt.20180
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A minimal blocker in a bipartite graph G is a minimal set of edges the removal of which leaves no perfect matching in G. We give an explicit characterization of the minimal blockers of a bipartite graph G. This result allows us to obtain a polynomial delay algorithm for finding all minimal blockers of a given bipartite graph. Equivalently, we obtain a polynomial delay algorithm for listing the anti-vertices of the perfect matching polytope of G. We also provide generation algorithms for other related problems, including d-factors in bipartite graphs, and perfect 2-matchings in general graphs. (C) 2006 Wiley Periodicals, Inc.
引用
收藏
页码:209 / 232
页数:24
相关论文
共 29 条
[1]  
[Anonymous], 1993, GEOMETRIC ALGORITHMS
[2]  
AVIS D, 1991, S COMPUT GEOM, P98
[3]  
Boros E, 2004, LECT NOTES COMPUT SC, V3064, P152
[4]   Generating maximal independent sets for hypergraphs with bounded edge-intersections [J].
Boros, E ;
Elbassioni, K ;
Gurvich, V ;
Khachiyan, L .
LATIN 2004: THEORETICAL INFORMATICS, 2004, 2976 :488-498
[5]   The vertex set of a 0/1-polytope is strongly P-enumerable [J].
Bussieck, MR ;
Lubbecke, ME .
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1998, 11 (02) :103-109
[6]  
COOK W, 1998, COMBINATORIAL OPTIMI, P91
[7]   An efficient network flow code for finding all minimum cost s-t cutsets [J].
Curet, ND ;
DeVinney, J ;
Gaston, ME .
COMPUTERS & OPERATIONS RESEARCH, 2002, 29 (03) :205-219
[8]  
Dulmage Andrew L., 1959, Trans. R. Soc. Canada, Sect. III, V53, P1
[9]   New results on monotone dualization and generating hypergraph transversals [J].
Eiter, T ;
Gottlob, G ;
Makino, K .
SIAM JOURNAL ON COMPUTING, 2003, 32 (02) :514-537
[10]   FINDING ALL MINIMUM-COST PERFECT MATCHINGS IN BIPARTITE GRAPHS [J].
FUKUDA, K ;
MATSUI, T .
NETWORKS, 1992, 22 (05) :461-468