Generalization of Jakimovski-Leviatan type Szasz operators

被引:11
作者
Sucu, Sezgin [1 ]
Varma, Serhan [1 ]
机构
[1] Ankara Univ, Fac Sci, Dept Math, TR-06100 Ankara, Turkey
关键词
Szasz operator; Modulus of continuity; Rate of convergence; Sheffer polynomials; Meixner polynomials;
D O I
10.1016/j.amc.2015.08.077
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to give a Stancu type generalization of Jakimovski-Leviatan type Szasz operators defined by means of the Sheffer polynomials. We obtain convergence prop erties of our operators with the help of Korovkin theorem and the order of approximation by using classical and second modulus of continuity. Explicit examples with our operators including Meixner polynomials and the 2-orthogonal polynomials of Laguerre type are given. We present two significant numerical mathematical algorithms as examples for the error estimation. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:977 / 983
页数:7
相关论文
共 18 条
  • [1] A Kantorovich-Stancu Type Generalization of Szasz Operators including Brenke Type Polynomials
    Aktas, Rabia
    Cekim, Bayram
    Tasdelen, Fatma
    [J]. JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2013,
  • [2] Altomare F., 1994, de Gruyter Series Studies in Mathematics, V17
  • [3] Atakut Ç, 2011, J COMPUT ANAL APPL, V13, P673
  • [4] Stancu type generalization of the Favard-Szasz operators
    Atakut, Cigdem
    Buyukyazici, Ibrahim
    [J]. APPLIED MATHEMATICS LETTERS, 2010, 23 (12) : 1479 - 1482
  • [5] Ciupa A., 1994, 1 U BAB BOL CLUJ NAP, P33
  • [6] Ciupa A., 1996, REV ANAL NUMER THEOR, V25, P57
  • [7] Douak K., 1999, INT J MATH MATH SCI, V22, P29
  • [8] Gavrea I., 1993, Rev. Anal. Numr. Thor. Approx, V22, P173
  • [9] Ismail M. E. H., 1974, Mathematica, V39, P259
  • [10] Jakimovski A., 1969, Mathematica (Cluj), V11, P97