Disorder-induced nonlinear Hall effect with time-reversal symmetry

被引:222
作者
Du, Z. Z. [1 ,2 ,3 ,4 ]
Wang, C. M. X. [1 ,2 ,3 ,5 ]
Li, Shuai [1 ,2 ,3 ]
Lu, Hai-Zhou [1 ,2 ,3 ,4 ,6 ]
Xie, X. C. [7 ,8 ,9 ]
机构
[1] Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China
[2] Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China
[3] Shenzhen Key Lab Quantum Sci & Engn, Shenzhen 518055, Peoples R China
[4] Peng Cheng Lab, Shenzhen 518055, Peoples R China
[5] Shanghai Normal Univ, Dept Phys, Shanghai 200234, Peoples R China
[6] Shanghai Jiao Tong Univ, Tsung Dao Lee Inst, Shanghai 200240, Peoples R China
[7] Peking Univ, Int Ctr Quantum Mat, Sch Phys, Beijing 100871, Peoples R China
[8] Beijing Acad Quantum Informat Sci, Beijing 100193, Peoples R China
[9] Univ Chinese Acad Sci, CAS Ctr Excellence Topol Quantum Computat, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1038/s41467-019-10941-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The nonlinear Hall effect has opened the door towards deeper understanding of topological states of matter. Disorder plays indispensable roles in various linear Hall effects, such as the localization in the quantized Hall effects and the extrinsic mechanisms of the anomalous, spin, and valley Hall effects. Unlike in the linear Hall effects, disorder enters the nonlinear Hall effect even in the leading order. Here, we derive the formulas of the nonlinear Hall conductivity in the presence of disorder scattering. We apply the formulas to calculate the nonlinear Hall response of the tilted 2D Dirac model, which is the symmetry-allowed minimal model for the nonlinear Hall effect and can serve as a building block in realistic band structures. More importantly, we construct the general scaling law of the nonlinear Hall effect, which may help in experiments to distinguish disorder-induced contributions to the nonlinear Hall effect in the future.
引用
收藏
页数:6
相关论文
共 30 条
[1]  
Cage M.E., 2012, The Quantum Hall Effect
[2]   Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator [J].
Chang, Cui-Zu ;
Zhang, Jinsong ;
Feng, Xiao ;
Shen, Jie ;
Zhang, Zuocheng ;
Guo, Minghua ;
Li, Kang ;
Ou, Yunbo ;
Wei, Pang ;
Wang, Li-Li ;
Ji, Zhong-Qing ;
Feng, Yang ;
Ji, Shuaihua ;
Chen, Xi ;
Jia, Jinfeng ;
Dai, Xi ;
Fang, Zhong ;
Zhang, Shou-Cheng ;
He, Ke ;
Wang, Yayu ;
Lu, Li ;
Ma, Xu-Cun ;
Xue, Qi-Kun .
SCIENCE, 2013, 340 (6129) :167-170
[3]   Band Signatures for Strong Nonlinear Hall Effect in Bilayer WTe2 [J].
Du, Z. Z. ;
Wang, C. M. ;
Lu, Hai-Zhou ;
Xie, X. C. .
PHYSICAL REVIEW LETTERS, 2018, 121 (26)
[4]  
Dzsaber S, 2018, ARXIV181102819
[5]   Strongly Enhanced Berry Dipole at Topological Phase Transitions in BiTeI [J].
Facio, Jorge, I ;
Efremov, Dmitri ;
Koepernik, Klaus ;
You, Jhih-Shih ;
Sodemann, Intl ;
van den Brink, Jeroen .
PHYSICAL REVIEW LETTERS, 2018, 121 (24)
[6]   Multivariable Scaling for the Anomalous Hall Effect [J].
Hou, Dazhi ;
Su, Gang ;
Tian, Yuan ;
Jin, Xiaofeng ;
Yang, Shengyuan A. ;
Niu, Qian .
PHYSICAL REVIEW LETTERS, 2015, 114 (21)
[7]  
Isobe H, 2018, ARXIV181208162
[8]   Nonlinear anomalous Hall effect in few-layer WTe2 [J].
Kang, Kaifei ;
Li, Tingxin ;
Sohn, Egon ;
Shan, Jie ;
Mak, Kin Fai .
NATURE MATERIALS, 2019, 18 (04) :324-+
[9]  
Klitzing K.v., 1990, QUANTUM HALL EFFECT
[10]   Gyrotropic Hall effect in Berry-curved materials [J].
Koenig, E. J. ;
Dzero, I. M. ;
Levchenko, A. ;
Pesin, D. A. .
PHYSICAL REVIEW B, 2019, 99 (15)