Advances in three-dimensional rapid prototyping of microfluidic devices for biological applications

被引:103
作者
O'Neill, P. F. [1 ,2 ]
Ben Azouz, A. [1 ,2 ,3 ]
Vazquez, M. [1 ,2 ]
Liu, J. [1 ]
Marczak, S. [4 ]
Slouka, Z. [4 ]
Chang, H. C. [4 ]
Diamond, D. [3 ]
Brabazon, D. [1 ,2 ]
机构
[1] Dublin City Univ, Sch Mech & Mfg Engn, Adv Proc Technol Res Ctr, Dublin 9, Ireland
[2] Dublin City Univ, Natl Ctr Sensor Res, Irish Separat Sci Cluster, Dublin 9, Ireland
[3] Dublin City Univ, Natl Ctr Sensor Res, Insight Ctr Data Analyt, Dublin 9, Ireland
[4] Univ Notre Dame, Ctr Microfluid & Med Diagnost, Notre Dame, IN 46556 USA
基金
美国国家科学基金会; 爱尔兰科学基金会;
关键词
ON-A-CHIP; FABRICATION; VERSATILE; CULTURE; SYSTEM; FUTURE; GLASS;
D O I
10.1063/1.4898632
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The capability of 3D printing technologies for direct production of complex 3D structures in a single step has recently attracted an ever increasing interest within the field of microfluidics. Recently, ultrafast lasers have also allowed developing new methods for production of internal microfluidic channels within the bulk of glass and polymer materials by direct internal 3D laser writing. This review critically summarizes the latest advances in the production of microfluidic 3D structures by using 3D printing technologies and direct internal 3D laser writing fabrication methods. Current applications of these rapid prototyped microfluidic platforms in biology will be also discussed. These include imaging of cells and living organisms, electrochemical detection of viruses and neurotransmitters, and studies in drug transport and induced-release of adenosine triphosphate from erythrocytes. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:11
相关论文
共 55 条
[1]   A 3D Printed Fluidic Device that Enables Integrated Features [J].
Anderson, Kari B. ;
Lockwood, Sarah Y. ;
Martin, R. Scott ;
Spence, Dana M. .
ANALYTICAL CHEMISTRY, 2013, 85 (12) :5622-5626
[2]   Mail-order microfluidics: evaluation of stereolithography for the production of microfluidic devices [J].
Au, Anthony K. ;
Lee, Wonjae ;
Folch, Albert .
LAB ON A CHIP, 2014, 14 (07) :1294-1301
[3]   Digital microfluidics for cell-based assays [J].
Barbulovic-Nad, Irena ;
Yang, Hao ;
Park, Philip S. ;
Wheeler, Aaron R. .
LAB ON A CHIP, 2008, 8 (04) :519-526
[4]   Hype, hope and hubris: the quest for the killer application in microfluidics [J].
Becker, Holger .
LAB ON A CHIP, 2009, 9 (15) :2119-2122
[5]   Chips, money, industry, education and the "killer application'' [J].
Becker, Holger .
LAB ON A CHIP, 2009, 9 (12) :1659-1660
[6]   The Femtoprint Project [J].
Bellouard, Y. ;
Champion, A. ;
Lenssen, B. ;
Matteucci, M. ;
Schaap, A. ;
Beresna, M. ;
Corbari, C. ;
Gecevicius, M. ;
Kazansky, P. ;
Chappuis, O. ;
Kral, M. ;
Clavel, R. ;
Barrot, F. ;
Breguet, J. -M. ;
Mabillard, Y. ;
Bottinelli, S. ;
Hopper, M. ;
Hoenninger, C. ;
Mottay, E. ;
Lopez, J. .
JOURNAL OF LASER MICRO NANOENGINEERING, 2012, 7 (01) :1-10
[7]  
Ben Azouz A., 2014, COMPREHENSIVE MAT PR, P447
[8]   Microfluidic approach for direct and uniform laser irradiation to study biochemical state changes on Jurkat-T cells [J].
Butler, Sween J. ;
Lee, Dong Weon ;
Burney, Curtis W. ;
Wigle, Jeffrey C. ;
Choie, Tae Youl .
JOURNAL OF BIOMEDICAL OPTICS, 2013, 18 (11)
[9]   Exploitation of physical and chemical constraints for three-dimensional microtissue construction in microfluidics [J].
Choudhury, Deepak ;
Mo, Xuejun ;
Iliescu, Ciprian ;
Tan, Loo Ling ;
Tong, Wen Hao ;
Yu, Hanry .
BIOMICROFLUIDICS, 2011, 5 (02)
[10]   Controlled Ultraviolet (UV) Photoinitiated Fabrication of Monolithic Porous Layer Open Tubular (monoPLOT) Capillary Columns for Chromatographic Applications [J].
Collins, David A. ;
Nesterenko, Ekaterina P. ;
Brabazon, Dermot ;
Paull, Brett .
ANALYTICAL CHEMISTRY, 2012, 84 (07) :3465-3472