Site-renormalised molecular fluid theory: on the utility of a two-site model of water

被引:34
作者
Dyer, Kippi M. [1 ]
Perkyns, John S. [1 ]
Stell, George [2 ]
Pettitt, B. Montgomery [1 ]
机构
[1] Univ Houston, Dept Chem, Houston, TX 77004 USA
[2] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA
关键词
integral equations; water; ionic solutions; EXPANSION; EQUATION;
D O I
10.1080/00268970902845313
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We propose a simple, two-site model of water, using the familiar three-site Simple Point Charge (SPC) model as a guide. We briefly examine the resulting dielectric and solvation properties of the bulk fluid, both pure and in a three component mixture of apolar or ionic simple fluid solutes, using integral equation methods. The results confirm a practical utility of this simplified model, and the essential predictive properties of the site-renormalised molecular fluid theory.
引用
收藏
页码:423 / 431
页数:9
相关论文
共 18 条
[1]  
Berendsen H. J. C., 1981, Intermol. Forces, P331
[2]   INVARIANT EXPANSION FOR 2-BODY CORRELATIONS - THERMODYNAMIC FUNCTIONS, SCATTERING, AND ORNSTEIN-ZERNIKE EQUATION [J].
BLUM, L ;
TORRUELLA, AJ .
JOURNAL OF CHEMICAL PHYSICS, 1972, 56 (01) :303-+
[3]   OPTIMIZED CLUSTER EXPANSIONS FOR CLASSICAL FLUIDS .2. THEORY OF MOLECULAR LIQUIDS [J].
CHANDLER, D ;
ANDERSEN, HC .
JOURNAL OF CHEMICAL PHYSICS, 1972, 57 (05) :1930-+
[4]   NEW AND PROPER INTEGRAL-EQUATIONS FOR SITE-SITE EQUILIBRIUM CORRELATIONS IN MOLECULAR FLUIDS [J].
CHANDLER, D ;
SILBEY, R ;
LADANYI, BM .
MOLECULAR PHYSICS, 1982, 46 (06) :1335-1345
[5]  
CHANDLER D, 1982, LIQUID STATE MATTER, P275
[6]  
Dyer K, 2007, CONDENS MATTER PHYS, V10, P331, DOI 10.5488/CMP.10.3.331
[7]   A molecular site-site integral equation that yields the dielectric constant [J].
Dyer, Kippi M. ;
Perkyns, John S. ;
Stell, George ;
Pettitt, B. Montgomery .
JOURNAL OF CHEMICAL PHYSICS, 2008, 129 (10)
[8]   A site-renormalized molecular fluid theory [J].
Dyer, Kippi M. ;
Perkyns, John S. ;
Pettitt, B. Montgomery .
JOURNAL OF CHEMICAL PHYSICS, 2007, 127 (19)
[9]  
Friedman H. L., 1985, A Course in Statistical Mechanics
[10]  
Hansen J-P, 2013, Theory of Simple Liquids: With Applications to Soft Matter