Simultaneous measurement of in-plane and through-plane thermal conductivity using beam-offset frequency domain thermoreflectance

被引:56
作者
Rodin, David [1 ]
Yee, Shannon K. [1 ]
机构
[1] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
关键词
Aluminum oxide - Thermal conductivity - Frequency estimation - Heat transfer - Thin films - Alumina - Frequency domain analysis - Pyrolytic graphite - Uncertainty analysis;
D O I
10.1063/1.4973297
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Transient thermoreflectance (TTR) techniques are ubiquitous methods for measuring thermal conductivity of bulk materials and thin-films. Both through-plane thermal conductivity k(perpendicular to) and in-plane thermal conductivity k(parallel to) should be independently measured in transversely anisotropic materials. When these properties are measured using conventional TTR techniques, the accuracy of the k(parallel to) measurement is dependent on the accuracy of measuring k(perpendicular to) and vice versa. This is especially problematic for thin-films measurements as uncertainty in k(perpendicular to) (similar to 5%) can propagate and grow for uncertainty in k(parallel to). In this paper, we present a method for the simultaneous measurement of k(perpendicular to) and k(parallel to) using beam-offset frequency domain thermoreflectance (FDTR) with robust uncertainty estimation. The conventional diffusive heat transfer solution is analyzed to show that offset and heating frequency can independently control the sensitivity to directional thermal conductivity and extract values for k(parallel to) and k(perpendicular to). Numerical uncertainty analyses demonstrate that sweeping both heating frequency and beam offset results in a reduction of measurement uncertainty. This modified measurement technique is demonstrated on crystalline alumina (c-Al2O3), amorphous alumina (a-Al2O3), quartz, fused silica, and highly oriented pyrolytic graphite. Published by AIP Publishing.
引用
收藏
页数:7
相关论文
共 28 条
[1]   Dynamical determination of the elastic constants and their temperature coefficients for quartz [J].
Atanasoff, JV ;
Hart, PJ .
PHYSICAL REVIEW, 1941, 59 (01) :85-96
[2]  
Bing-Yue T., 2003, INT S VLSI TECHN SYS
[3]   Thermal Boundary Resistance in GaN Films Measured by Time Domain Thermoreflectance with Robust Monte Carlo Uncertainty Estimation [J].
Bougher, Thomas L. ;
Yates, Luke ;
Lo, Chien-Fong ;
Johnson, Wayne ;
Graham, Samuel ;
Cola, Baratunde A. .
NANOSCALE AND MICROSCALE THERMOPHYSICAL ENGINEERING, 2016, 20 (01) :22-32
[4]   Nanoscale thermal transport [J].
Cahill, DG ;
Ford, WK ;
Goodson, KE ;
Mahan, GD ;
Majumdar, A ;
Maris, HJ ;
Merlin, R ;
Phillpot, SR .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (02) :793-818
[5]   Analysis of heat flow in layered structures for time-domain thermoreflectance [J].
Cahill, DG .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (12) :5119-5122
[6]   Thermometry and thermal transport in micro/nanoscale solid-state devices and structures [J].
Cahill, DG ;
Goodson, KE ;
Majumdar, A .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2002, 124 (02) :223-241
[7]   THERMAL-CONDUCTIVITY MEASUREMENT FROM 30-K TO 750-K - THE 3-OMEGA METHOD [J].
CAHILL, DG .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1990, 61 (02) :802-808
[8]   1ω, 2ω, and 3ω methods for measurements of thermal properties -: art. no. 124902 [J].
Dames, C ;
Chen, G .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2005, 76 (12) :1-14
[9]   Pump-probe measurements of the thermal conductivity tensor for materials lacking in-plane symmetry [J].
Feser, Joseph P. ;
Liu, Jun ;
Cahill, David G. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (10)
[10]   Probing anisotropic heat transport using time-domain thermoreflectance with offset laser spots [J].
Feser, Joseph P. ;
Cahill, David G. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (10)