Federated Self-Supervised Learning of Multisensor Representations for Embedded Intelligence

被引:72
作者
Saeed, Aaqib [1 ]
Salim, Flora D. [2 ,3 ]
Ozcelebi, Tanir [1 ]
Lukkien, Johan [1 ]
机构
[1] Eindhoven Univ Technol, Dept Math & Comp Sci, NL-5612 AE Eindhoven, Netherlands
[2] RMIT Univ, Sch Sci, Melbourne, Vic 3001, Australia
[3] RMIT Univ, RMIT Ctr Informat Discovery & Data Analyt, Melbourne, Vic 3001, Australia
关键词
Brain modeling; Task analysis; Data models; Internet of Things; Wavelet transforms; Sleep; Deep learning; embedded intelligence; federated learning; learning representations; low-data regime; self-supervised learning; sensor analytics;
D O I
10.1109/JIOT.2020.3009358
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Smartphones, wearables, and Internet-of-Things (IoT) devices produce a wealth of data that cannot be accumulated in a centralized repository for learning supervised models due to privacy, bandwidth limitations, and the prohibitive cost of annotations. Federated learning provides a compelling framework for learning models from decentralized data, but conventionally, it assumes the availability of labeled samples, whereas on-device data are generally either unlabeled or cannot be annotated readily through user interaction. To address these issues, we propose a self-supervised approach termed scalogram-signal correspondence learning based on wavelet transform (WT) to learn useful representations from unlabeled sensor inputs as electroencephalography, blood volume pulse, accelerometer, and WiFi channel-state information. Our auxiliary task requires a deep temporal neural network to determine if a given pair of a signal and its complementary view (i.e., a scalogram generated with WT) align with each other, by optimizing a contrastive objective. We extensively assess the quality of learned features with our multiview strategy on diverse public data sets, achieving strong performance in all domains. We demonstrate the effectiveness of representations learned from an unlabeled input collection on downstream tasks with training a linear classifier over pretrained network, usefulness in low-data regime, transfer learning, and cross-validation. Our methodology achieves competitive performance with fully supervised networks and it works significantly better than pretraining with autoencoders in both central and federated contexts. Notably, it improves the generalization in a semisupervised setting as it reduces the volume of labeled data required through leveraging self-supervised learning.
引用
收藏
页码:1030 / 1040
页数:11
相关论文
共 54 条
[1]  
[Anonymous], 2005, DCT rapporten
[2]  
Balcan Maria Florina, 2012, JMLR Workshop and Conference Proceedings, P26
[3]  
Ballinger B, 2018, AAAI CONF ARTIF INTE, P2079
[4]   Multimodal Machine Learning: A Survey and Taxonomy [J].
Baltrusaitis, Tadas ;
Ahuja, Chaitanya ;
Morency, Louis-Philippe .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (02) :423-443
[5]  
Bonawitz K., 2019, Proc. Mach. Learning Syst.
[6]   Practical Secure Aggregation for Privacy-Preserving Machine Learning [J].
Bonawitz, Keith ;
Ivanov, Vladimir ;
Kreuter, Ben ;
Marcedone, Antonio ;
McMahan, H. Brendan ;
Patel, Sarvar ;
Ramage, Daniel ;
Segal, Aaron ;
Seth, Karn .
CCS'17: PROCEEDINGS OF THE 2017 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2017, :1175-1191
[7]   Learning a similarity metric discriminatively, with application to face verification [J].
Chopra, S ;
Hadsell, R ;
LeCun, Y .
2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, :539-546
[8]   THE WAVELET TRANSFORM, TIME-FREQUENCY LOCALIZATION AND SIGNAL ANALYSIS [J].
DAUBECHIES, I .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (05) :961-1005
[9]  
de Sa V.R., 1994, Advances in Neural Information Processing Systems
[10]  
Dean J, 2004, USENIX ASSOCIATION PROCEEDINGS OF THE SIXTH SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION (OSDE '04), P137