A first principles investigation of lithium intercalation in TiO2-B

被引:81
作者
Panduwinata, Dwi [1 ]
Gale, Julian D. [1 ]
机构
[1] Curtin Univ Technol, Dept Chem, Nanochem Res Inst, Perth, WA 6845, Australia
基金
澳大利亚研究理事会;
关键词
TITANIUM-DIOXIDE; NEGATIVE ELECTRODES; AB-INITIO; BATTERIES; TIO2(B); NANOWIRES; DIFFUSION; PSEUDOPOTENTIALS; NANOTUBES; TITANATES;
D O I
10.1039/b902683e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The intercalation of lithium into the polymorph of titania, TiO2-B, has been examined using first principles methods, based on the Generalized Gradient Approximation within density functional theory. Three symmetry unique sites have been identified for the preferential location of lithium within the structure at low concentration, as well as the diffusion pathways between these sites. Lithium is found to bind most favourably at a site close to the titania octahedral layer, while the lowest activation energy for diffusion of 27 kJ mol(-1) is found for diffusion along the open channel parallel to the b axis of the material. The need to activate lithium towards diffusion through the population of higher energy binding sites within the channel, along with the larger barrier for lithium to migrate through the sidewalls of nanotubular TiO2-B, provides an explanation for many of the observed experimental electrochemical properties of this potential battery material.
引用
收藏
页码:3931 / 3940
页数:10
相关论文
共 50 条
  • [21] Hierarchical porous flower-like TiO2-B constructed by thin nanosheets for efficient lithium storage
    Yin, Kaili
    Cai, Yi
    Zheng, Xianfeng
    Deng, Zhao
    Su, Bao-Lian
    Wang, Hong-En
    MATERIALS LETTERS, 2017, 201 : 93 - 96
  • [22] Theoretical investigation of dissociative and non-dissociative acetic-acid on TiO2-B surfaces
    Yan, Wei
    Yuan, Xiaojia
    Liu, Xiaojie
    APPLIED SURFACE SCIENCE, 2019, 494 : 850 - 858
  • [23] Lithium Insertion in Nanostructured TiO2(B) Architectures
    Dylla, Anthony G.
    Henkelman, Graeme
    Stevenson, Keith J.
    ACCOUNTS OF CHEMICAL RESEARCH, 2013, 46 (05) : 1104 - 1112
  • [24] TiO2-B narrow nanobelt/TiO2 nanoparticle composite photoelectrode for dye-sensitized solar cells
    Pan, Kai
    Dong, Youzhen
    Tian, Chungui
    Zhou, Wei
    Tian, Guohui
    Zhao, Baofeng
    Fu, Honggang
    ELECTROCHIMICA ACTA, 2009, 54 (28) : 7350 - 7356
  • [25] Vanadium-doped TiO2-B/anatase mesoporous nanotubes with improved rate and cycle performance for rechargeable lithium and C sodium batteries
    Opra, D. P.
    Gnedenkov, S., V
    Sokolov, A. A.
    Podgorbunsky, A. B.
    Ustinov, A. Yu
    Mayorov, V. Yu
    Kuryavyi, V. G.
    Sinebryukhov, S. L.
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2020, 54 : 181 - 189
  • [26] Atomic structure of defects and interfaces in TiO2-B and Ca:TiO2-B (CaTi5O11) films grown on SrTiO3
    Kim, Sung Joo
    Zhang, Kui
    Katz, Michael B.
    Li, Baihai
    Graham, George W.
    Pan, Xiaoqing
    CRYSTENGCOMM, 2015, 17 (23): : 4309 - 4315
  • [27] Photocatalytic dry reforming of methane by rhodium supported monoclinic TiO2-B nanobelts
    Kushida, Masaru
    Yamaguchi, Akira
    Miyauchi, Masahiro
    JOURNAL OF ENERGY CHEMISTRY, 2022, 71 : 562 - 571
  • [28] TiO2-B nanofibers with high thermal stability as improved anodes for lithium ion batteries
    Zhuang, Wei
    Lu, Linghong
    Wu, Xinbing
    Jin, Wei
    Meng, Meng
    Zhu, Yudan
    Lu, Xiaohua
    ELECTROCHEMISTRY COMMUNICATIONS, 2013, 27 : 124 - 127
  • [29] Structure and Stability of TiO2-B Surfaces: A Density Functional Study
    Vittadini, Andrea
    Casarin, Maurizio
    Selloni, Annabella
    JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (44) : 18973 - 18977
  • [30] Li diffusion properties of mixed conducting TiO2-B nanowires
    Wilkening, M.
    Heine, J.
    Lyness, C.
    Armstrong, A. R.
    Bruce, P. G.
    PHYSICAL REVIEW B, 2009, 80 (06)