HARDY-TYPE INEQUALITIES FOR FRACTIONAL POWERS OF THE DUNKL-HERMITE OPERATOR

被引:5
作者
Ciaurri, Oscar [1 ]
Roncal, Luz [1 ,2 ]
Thangavelu, Sundaram [3 ]
机构
[1] Univ La Rioja, Dept Matemat & Comp, Logrono 26006, Spain
[2] BCAM, Bilbao 48009, Spain
[3] Indian Inst Sci, Dept Math, Bangalore 560012, Karnataka, India
关键词
Hardy inequality; Dunkl harmonic oscillator; fractional order operator; Laguerre expansions; heat semigroup;
D O I
10.1017/S0013091517000311
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove Hardy-type inequalities for a fractional Dunkl-Hermite operator, which incidentally gives Hardy inequalities for the fractional harmonic oscillator as well. The idea is to use h-harmonic expansions to reduce the problem in the Dunkl-Hermite context to the Laguerre setting. Then, we push forward a technique based on a non-local ground representation, initially developed by Frank et al. ['Hardy-Lieb-Thirring inequalities for fractional Schrodinger operators, J. Amer. Math. Soc. 21 (2008), 925-950'] in the Euclidean setting, to obtain a Hardy inequality for the fractional-type Laguerre operator. The above-mentioned method is shown to be adaptable to an abstract setting, whenever there is a 'good' spectral theorem and an integral representation for the fractional operators involved.
引用
收藏
页码:513 / 544
页数:32
相关论文
共 50 条
[21]   Hardy-type inequalities on the cones of monotone functions [J].
O. V. Popova .
Siberian Mathematical Journal, 2012, 53 :152-167
[22]   Some Recent Results on Hardy-Type Inequalities [J].
Balinsky, A. A. ;
Evans, W. D. .
APPLIED MATHEMATICS & INFORMATION SCIENCES, 2010, 4 (02) :191-208
[23]   HARDY-TYPE INEQUALITIES ON THE CONES OF MONOTONE FUNCTIONS [J].
Popova, O. V. .
SIBERIAN MATHEMATICAL JOURNAL, 2012, 53 (01) :152-167
[24]   Hardy-type inequalities on planar and spatial open sets [J].
F. G. Avkhadiev .
Proceedings of the Steklov Institute of Mathematics, 2006, 255 (1) :2-12
[25]   Sharp Hardy-type inequalities with Lamb's constants [J].
Avkhadiev, F. G. ;
Wirths, K. -J. .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2011, 18 (04) :723-736
[26]   Best constants in bipolar Lp Hardy-type inequalities [J].
Cazacu, Cristian ;
Rugina, Teodor .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 530 (01)
[27]   SHARP CONFORMALLY INVARIANT HARDY-TYPE INEQUALITIES WITH REMAINDERS [J].
Nasibullin, R. G. .
EURASIAN MATHEMATICAL JOURNAL, 2021, 12 (03) :46-56
[28]   A unified approach to dynamic Hardy-type and Copson-type inequalities [J].
Saker, Samir H. ;
Mahmoud, Ramy R. ;
Abdo, Khadega R. ;
Krnic, Mario .
BULLETIN DES SCIENCES MATHEMATIQUES, 2022, 174
[29]   GENERAL HARDY-TYPE INEQUALITIES WITH NON-CONJUGATE EXPONENTS [J].
Cizmesija, A. ;
Krnic, M. ;
Pecaric, J. .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2011, 37 (03) :77-108
[30]   Two-sided hardy-type inequalities for monotone functions [J].
V. D. Stepanov ;
L. E. Persson ;
O. V. Popova .
Doklady Mathematics, 2009, 80 :814-817