Multilevel simulation of hard-sphere mixtures

被引:0
|
作者
Rohrbach, Paul B. [1 ]
Kobayashi, Hideki [2 ]
Scheichl, Robert [3 ,4 ]
Wilding, Nigel B. [5 ]
Jack, Robert L. [1 ,6 ]
机构
[1] Univ Cambridge, Dept Appl Math & Theoret Phys, Wilberforce Rd, Cambridge CB3 0WA, England
[2] Georg August Univ, Inst Theoret Phys, Gottingen, Germany
[3] Heidelberg Univ, Inst Appl Math, Im Neuenheimer Feld 205, D-69120 Heidelberg, Germany
[4] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
[5] Univ Bristol, HH Wills Phys Lab, Royal Ft, Bristol BS8 1TL, Avon, England
[6] Univ Cambridge, Yusuf Hamied Dept Chem, Lensfield Rd, Cambridge CB2 1EW, England
来源
JOURNAL OF CHEMICAL PHYSICS | 2022年 / 157卷 / 12期
关键词
Mixtures;
D O I
10.1063/5.0102875
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a multilevel Monte Carlo simulation method for analyzing multi-scale physical systems via a hierarchy of coarse-grained representations, to obtain numerically exact results, at the most detailed level. We apply the method to a mixture of size-asymmetric hard spheres, in the grand canonical ensemble. A three-level version of the method is compared with a previously studied two-level version. The extra level interpolates between the full mixture and a coarse-grained description where only the large particles are present-this is achieved by restricting the small particles to regions close to the large ones. The three-level method improves the performance of the estimator, at fixed computational cost. We analyze the asymptotic variance of the estimator and discuss the mechanisms for the improved performance. (c) 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Effects of interactions between depletants in phase diagrams of binary hard-sphere systems
    Suematsu, A.
    Yoshimori, A.
    Akiyama, R.
    EPL, 2016, 116 (03)
  • [32] A generalized mixing rule for hard-sphere equations of state of Percus-Yevick type
    Khoshkbarchi, MK
    Vera, JH
    FLUID PHASE EQUILIBRIA, 1998, 142 (1-2) : 131 - 147
  • [33] Using fundamental measure theory to treat the correlation function of the inhomogeneous hard-sphere fluid
    Schulte, Jeff B.
    Kreitzberg, Patrick A.
    Haglund, Chris V.
    Roundy, David
    PHYSICAL REVIEW E, 2012, 86 (06):
  • [34] RY theory investigation of phase coexistence in hard sphere mixtures
    Caccamo, C
    Pellicane, G
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1997, 235 (1-2) : 149 - 158
  • [35] Neural-network-based order parameters for classification of binary hard-sphere crystal structures
    Boattini, Emanuele
    Ram, Michel
    Smallenburg, Frank
    Filion, Laura
    MOLECULAR PHYSICS, 2018, 116 (21-22) : 3066 - 3075
  • [36] Fundamental measure theory for the inhomogeneous hard-sphere system based on Santos' consistent free energy
    Hansen-Goos, Hendrik
    Mortazavifar, Mostafa
    Oettel, Martin
    Roth, Roland
    PHYSICAL REVIEW E, 2015, 91 (05):
  • [37] Extended hard-sphere model for predicting the viscosity of long-chain n-alkanes
    Riesco, Nicolas
    Vesovic, Velisa
    FLUID PHASE EQUILIBRIA, 2016, 425 : 385 - 392
  • [38] Chemical potential and surface free energy of a hard spherical particle in hard-sphere fluid over the full range of particle diameters
    Davidchack, Ruslan L. L.
    Laird, Brian B. B.
    JOURNAL OF CHEMICAL PHYSICS, 2022, 157 (07):
  • [39] Anomalous dynamic arrest of non-interacting spheres ("polymer") diluted in a hard-sphere ("colloid") liquid
    Lazaro-Lazaro, E.
    Moreno-Razo, J. A.
    Medina-Noyola, M.
    JOURNAL OF CHEMICAL PHYSICS, 2018, 148 (10):
  • [40] Predicting the Surface Tension of Refrigerants from Density Gradient Theory and Perturbed Hard-sphere Equation of State
    Sadeghi, M.
    Hosseini, S. M.
    Zarei, T.
    PHYSICAL CHEMISTRY RESEARCH, 2021, 9 (04): : 661 - 671