Plurisubharmonic functions on hypercomplex manifolds and HKT-geometry

被引:41
作者
Alesker, Semyon [1 ]
Verbitsky, Misha
机构
[1] Tel Aviv Univ, Dept Math, IL-69978 Tel Aviv, Israel
[2] Univ Glasgow, Dept Math, Glasgow G12 8QW, Lanark, Scotland
[3] Inst Theoret & Expt Phys, Moscow 117259, Russia
基金
英国工程与自然科学研究理事会;
关键词
plurisubharmonic functions; hypercomplex manifolds; quaternions; HKT-metric;
D O I
10.1007/BF02922058
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A hypercomplex manifold is a manifold equipped with a triple of complex structures I, J, K satisfying the quaternionic relations. We define a quaternionic analogue of plurisubharmonic functions on hypercomplex manifolds, and interpret these functions geometrically as potentials of HKT (hyperkahler with torsion) metrics. We prove a quaternionic analogue of A. D. Aleksandrov and Chem-Levine-Nirenberg theorems.
引用
收藏
页码:375 / 399
页数:25
相关论文
共 25 条
[1]  
Aleksandrov A. D., 1958, VESTNIK LENINGRAD U, V13, P5
[2]   Valuations on convex sets, non-commutative determinants, and pluripotential theory [J].
Alesker, S .
ADVANCES IN MATHEMATICS, 2005, 195 (02) :561-595
[3]   Non-commutative linear algebra and plurisubharmonic functions of quaternionic variables [J].
Alesker, S .
BULLETIN DES SCIENCES MATHEMATIQUES, 2003, 127 (01) :1-35
[4]  
Alesker S., 2003, J. Geom. Anal, V13, P205, DOI [10.1007/BF02930695, DOI 10.1007/BF02930695]
[5]   Quaternionic determinants [J].
Aslaksen, H .
MATHEMATICAL INTELLIGENCER, 1996, 18 (03) :57-65
[6]   Potentials for hyper-Kahler metrics with torsion [J].
Banos, B ;
Swann, A .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (13) :3127-3135
[7]  
Baston R., 1992, J. Geom. Phys., V8, P29, DOI DOI 10.1016/0393-0440(92)90042-Y
[8]   A NOTE ON HYPERHERMITIAN 4-MANIFOLDS [J].
BOYER, CP .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 102 (01) :157-164
[9]  
BRYANT RL, 1996, SEMIN CONGR, V1, P93
[10]   Yang-Mills fields on quaternionic spaces [J].
Capria, M. Mamone ;
Salamon, S. M. .
NONLINEARITY, 1988, 1 (04) :517-530