Nonlinear feedback controllers for the Navier-Stokes equations

被引:3
作者
Lefter, Adriana-Ioana [1 ,2 ]
机构
[1] Alexandru Ioan Cuza Univ, Fac Math, Iasi 700506, Romania
[2] O Mayer Inst Math, Iasi, Romania
关键词
Navier-Stokes equations; Strong and weak solution; Monotone operator; Feedback controller; Exponential stability;
D O I
10.1016/j.na.2008.10.068
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove the feedback stabilization of the Navier-Stokes equations preserving the invariance of a given convex set. To this aim we first deduce an existence theorem concerning weak solutions for the Navier-Stokes system perturbed with a subdifferential. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:301 / 316
页数:16
相关论文
共 15 条
[1]  
[Anonymous], 1977, STUDIES MATH ITS APP
[2]   Internal stabilization of Navier-Stokes equations with finite-dimensional controllers [J].
Barbu, V ;
Triggiani, R .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2004, 53 (05) :1443-1494
[3]   Flow-invariant closed sets with respect to nonlinear semigroup flows [J].
Barbu, V ;
Pavel, NH .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2003, 10 (01) :57-72
[4]   Internal stabilizability of the Navier-Stokes equations [J].
Barbu, V ;
Lefter, C .
SYSTEMS & CONTROL LETTERS, 2003, 48 (3-4) :161-167
[5]   The time optimal control of Navier-Stokes equations [J].
Barbu, V .
SYSTEMS & CONTROL LETTERS, 1997, 30 (2-3) :93-100
[6]   Flow invariance preserving feedback controllers for the Navier-Stokes equation [J].
Barbu, V ;
Sritharan, SS .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 255 (01) :281-307
[7]  
Barbu V., 1993, Analysis and control of nonlinear infinite dimensional systems
[8]  
Barbu V, 1976, Nonlinear Semigroups and Differential Equations in Banach Spaces, Editura Academiei Republicii Socialiste Romania
[9]  
Brezis H., 1973, N HOLLAND MATH STUDI, V50
[10]  
Constantin P, 1989, Navier-Stokes equation