Extracellular polymeric substances (EPS) properties and their effects on membrane fouling in a submerged membrane bioreactor

被引:610
作者
Wang, Zhiwei [1 ]
Wu, Zhichao [1 ]
Tang, Shujuan [1 ]
机构
[1] Tongji Univ, State Key Lab Pollut Control & Resource Reuse, Sch Environm Sci & Engn, Shanghai 200092, Peoples R China
关键词
Extracellular polymeric substances (EPS); Flat-sheet membrane; Membrane bioreactor (MBR); Membrane fouling; Wastewater treatment; MUNICIPAL WASTE-WATER; SOLUBLE MICROBIAL PRODUCTS; ACTIVATED-SLUDGE; SOLUTE REJECTION; ORGANIC-MATTER; MICROFILTRATION; FILTRATION; PERFORMANCE; PROTEIN; IMPACT;
D O I
10.1016/j.watres.2009.02.026
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A pilot-scale submerged membrane bioreactor (MBR) for real municipal wastewater treatment was operated for over one year in order to investigate extracellular polymeric substances (EPS) properties and their role in membrane fouling. The components and properties of bound EPS were examined by the evaluation of mean oxidation state (MOS) of organic carbons, Fourier transform infrared (FT-IR) spectroscopy, three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy, and gel filtration chromatography (GFC), etc. Test results showed that MOS of organic carbons in the bound EPS was ranging from -0.14 to -0.51, and major components could be assessed as proteins and carbohydrates. FT-IR analysis confirmed the presence of proteins and carbohydrates in the bound EPS. The organic substances with fluorescence characteristics in the bound EPS were identified as proteins, visible humic acid-like substances and fulvic acid-like substances by EEM technology. GFC analysis demonstrated that EPS had part of higher MW molecules and a broader MW distribution than the influent wastewater. It was also found that a high shear stress imposed on mixed liquor could result in the release of EPS, which would in turn influence membrane fouling in MBRs. Bound EPS solution was observed to have a stronger potential of fouling than mixed liquor. During long-term operation of the MBR, bound EPS demonstrated positive correlations with membrane fouling while temperature was verified as a negative factor affecting EPS concentration. Compared to tightly bound EPS (TB-EPS), loosely bound EPS (LB-EPS) showed more significant correlations with membrane fouling. This critical investigation would contribute towards a better understanding of the behavior, composition and fouling potential of EPS in MBR operation. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2504 / 2512
页数:9
相关论文
共 45 条
[1]  
ADAY SS, 2008, WATER RES, V42, P1644
[2]   Correlation of EPS content in activated sludge at different sludge retention times with membrane fouling phenomena [J].
Al-Halbouni, Djamila ;
Traber, Jacqueline ;
Lyko, Sven ;
Wintgens, Thomas ;
Melin, Thomas ;
Tacke, Daniela ;
Janot, Andreas ;
Dott, Wolfgang ;
Hollender, Juliane .
WATER RESEARCH, 2008, 42 (6-7) :1475-1488
[3]   Protein-like fluorescence intensity as a possible tool for determining river water quality [J].
Baker, A ;
Inverarity, R .
HYDROLOGICAL PROCESSES, 2004, 18 (15) :2927-2945
[4]   A review of soluble microbial products (SMP) in wastewater treatment systems [J].
Barker, DJ ;
Stuckey, DC .
WATER RESEARCH, 1999, 33 (14) :3063-3082
[5]   Sludge activity and cross-flow microfiltration a non-beneficial relationship [J].
Brockmann, M ;
Seyfried, CF .
WATER SCIENCE AND TECHNOLOGY, 1996, 34 (09) :205-213
[6]   Effects of membrane fouling on solute rejection during membrane filtration of activated sludge [J].
Chang, IS ;
Bag, SO ;
Lee, CH .
PROCESS BIOCHEMISTRY, 2001, 36 (8-9) :855-860
[7]   Membrane filtration characteristics in membrane-coupled activated sludge system - the effect of physiological states of activated sludge on membrane fouling [J].
Chang, IS ;
Lee, CH .
DESALINATION, 1998, 120 (03) :221-233
[8]  
[陈福泰 CHEN Futai], 2008, [中国给水排水, China Water & Wastewater], V24, P40
[9]   Fluorescence excitation - Emission matrix regional integration to quantify spectra for dissolved organic matter [J].
Chen, W ;
Westerhoff, P ;
Leenheer, JA ;
Booksh, K .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2003, 37 (24) :5701-5710
[10]  
Chinese-NEPA, 1997, Water and Wastewater Monitoring Methods