Tailoring the Void Size of Iron Oxide@Carbon Yolk-Shell Structure for Optimized Lithium Storage

被引:216
作者
Zhang, Hongwei [1 ]
Zhou, Liang [1 ]
Noonan, Owen [1 ]
Martin, Darren J. [1 ]
Whittaker, Andrew K. [1 ]
Yu, Chengzhong [1 ]
机构
[1] Univ Queensland, Australian Inst Bioengn & Nanotechnol, Brisbane, Qld 4072, Australia
基金
澳大利亚研究理事会;
关键词
PERFORMANCE ANODE MATERIAL; HOLLOW CARBON; NANOPARTICLES; GRAPHENE; SPHERES; MICROSPHERES; NANOCRYSTALS; NANOSPHERES; UNIFORM; COMPOSITES;
D O I
10.1002/adfm.201400178
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
High-capacity lithium-ion battery anode materials, such as transition metal oxides, Sn and Si, suffer from large volume expansion during lithiation, which causes capacity decay. Introducing sufficient void space to accommodate the volume change is essential to achieve prolonged cycling stability. However, excessive void space may significantly compromise the volumetric energy density. Herein, a method to control the void size in iron oxide@carbon (FeOx@C) yolk-shell structures is developed and the relationship between the void space and electrochemical performance is demonstrated. With an optimized void size, the FeOx@C yolk-shell structure exhibits the best cycling performance. A high reversible capacity of approximate to 810 mA h g(-1) is obtained at 0.2 C, maintaining 790 mA h g(-1) after 100 cycles. This contrasts with FeOx@C materials having either smaller or larger void sizes, in which significant capacity fading is observed during cycling. This contribution provides an effective approach to alleviate the volume expansion problem, which can be generally applied to other anode materials to improve their performance in LIBs.
引用
收藏
页码:4337 / 4342
页数:6
相关论文
共 37 条
[1]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[2]   Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins [J].
Deng, Yonghui ;
Qi, Dawei ;
Deng, Chunhui ;
Zhang, Xiangmin ;
Zhao, Dongyuan .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (01) :28-+
[3]   Nanoengineered Polypyrrole-Coated Fe2O3@C Multifunctional Composites with an Improved Cycle Stability as Lithium-Ion Anodes [J].
Han, Fei ;
Li, Duo ;
Li, Wen-Cui ;
Lei, Cheng ;
Sun, Qiang ;
Lu, An-Hui .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (13) :1692-1700
[4]   Carbon-Encapsulated Fe3O4 Nanoparticles as a High-Rate Lithium Ion Battery Anode Material [J].
He, Chunnian ;
Wu, Shan ;
Zhao, Naiqin ;
Shi, Chunsheng ;
Liu, Enzuo ;
Li, Jiajun .
ACS NANO, 2013, 7 (05) :4459-4469
[5]   One-Pot Facile Synthesis of Double-Shelled SnO2 Yolk-Shell-Structured Powders by Continuous Process as Anode Materials for Li-ion Batteries [J].
Hong, Young Jun ;
Son, Mun Yeong ;
Kang, Yun Chan .
ADVANCED MATERIALS, 2013, 25 (16) :2279-2283
[6]   A prelithiated carbon anode for lithium-ion battery applications [J].
Jarvis, C. R. ;
Lain, M. J. ;
Yakovleva, M. V. ;
Gao, Yuan .
JOURNAL OF POWER SOURCES, 2006, 162 (02) :800-802
[7]   Hierarchical Hollow Spheres of Fe2O3@Polyaniline for Lithium Ion Battery Anodes [J].
Jeong, Jae-Min ;
Choi, Bong Gill ;
Lee, Soon Chang ;
Lee, Kyoung G. ;
Chang, Sung-Jin ;
Han, Young-Kyu ;
Lee, Young Boo ;
Lee, Hyun Uk ;
Kwon, Soonjo ;
Lee, Gaehang ;
Lee, Chang-Soo ;
Huh, Yun Suk .
ADVANCED MATERIALS, 2013, 25 (43) :6250-6255
[8]   Recent Advances in Metal Oxide-based Electrode Architecture Design for Electrochemical Energy Storage [J].
Jiang, Jian ;
Li, Yuanyuan ;
Liu, Jinping ;
Huang, Xintang ;
Yuan, Changzhou ;
Lou, Xiong Wen .
ADVANCED MATERIALS, 2012, 24 (38) :5166-5180
[9]   Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries [J].
Lee, KT ;
Jung, YS ;
Oh, SM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (19) :5652-5653
[10]   Self-Assembled Fe3O4 Nanoparticle Clusters as High-Performance Anodes for Lithium Ion Batteries via Geometric Confinement [J].
Lee, Soo Hong ;
Yu, Seung-Ho ;
Lee, Ji Eun ;
Jin, Aihua ;
Lee, Dong Jun ;
Lee, Nohyun ;
Jo, Hyungyung ;
Shin, Kwangsoo ;
Ahn, Tae-Young ;
Kim, Young-Woon ;
Choe, Heeman ;
Sung, Yung-Eun ;
Hyeon, Taeghwan .
NANO LETTERS, 2013, 13 (09) :4249-4256