GOTHiC, a probabilistic model to resolve complex biases and to identify real interactions in Hi-C data

被引:51
作者
Mifsud, Borbala [1 ,2 ,5 ]
Martincorena, Inigo [1 ,6 ]
Darbo, Elodie [1 ,7 ]
Sugar, Robert [1 ]
Schoenfelder, Stefan [3 ]
Fraser, Peter [3 ]
Luscombe, Nicholas M. [1 ,2 ,4 ]
机构
[1] Francis Crick Inst, London, England
[2] UCL, Dept Genet Evolut & Environm, UCL Genet Inst, London, England
[3] Babraham Inst, Nucl Dynam Programme, Cambridge, England
[4] Okinawa Inst Sci & Technol, Okinawa, Japan
[5] Queen Mary Univ London, Sch Med & Dent, William Harvey Res Inst, London, England
[6] Wellcome Trust Sanger Inst, Hinxton, England
[7] Bordeaux Bioinformat Ctr, Bordeaux, France
来源
PLOS ONE | 2017年 / 12卷 / 04期
基金
英国医学研究理事会;
关键词
HUMAN GENOME; CHROMATIN; ORGANIZATION; PRINCIPLES;
D O I
10.1371/journal.pone.0174744
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Hi-C is one of the main methods for investigating spatial co-localisation of DNA in the nucleus. However, the raw sequencing data obtained from Hi-C experiments suffer from large biases and spurious contacts, making it difficult to identify true interactions. Existing methods use complex models to account for biases and do not provide a significance threshold for detecting interactions. Here we introduce a simple binomial probabilistic model that resolves complex biases and distinguishes between true and false interactions. The model corrects biases of known and unknown origin and yields a p-value for each interaction, providing a reliable threshold based on significance. We demonstrate this experimentally by testing the method against a random ligation dataset. Our method outperforms previous methods and provides a statistical framework for further data analysis, such as comparisons of Hi-C interactions between different conditions. GOTHiC is available as a BioConductor package (http://www.bioconductor.org/packages/release/bioc/html/GOTHiC.html).
引用
收藏
页数:15
相关论文
共 17 条
  • [1] Chromatin Position Effects Assayed by Thousands of Reporters Integrated in Parallel
    Akhtar, Waseem
    de Jong, Johann
    Pindyurin, Alexey V.
    Pagie, Ludo
    Meuleman, Wouter
    de Ridder, Jeroen
    Berns, Anton
    Wessels, Lodewyk F. A.
    van Lohuizen, Maarten
    van Steensel, Bas
    [J]. CELL, 2013, 154 (04) : 914 - 927
  • [2] Statistical confidence estimation for Hi-C data reveals regulatory chromatin contacts
    Ay, Ferhat
    Bailey, Timothy L.
    Noble, William Stafford
    [J]. GENOME RESEARCH, 2014, 24 (06) : 999 - 1011
  • [3] Bau A D, 2010, NATURE, V18, P107
  • [4] Global Reorganization of the Nuclear Landscape in Senescent Cells
    Chandra, Tamir
    Ewels, Philip Andrew
    Schoenfelder, Stefan
    Furlan-Magaril, Mayra
    Wingett, Steven William
    Kirschner, Kristina
    Thuret, Jean-Yves
    Andrews, Simon
    Fraser, Peter
    Reik, Wolf
    [J]. CELL REPORTS, 2015, 10 (04): : 471 - 483
  • [5] A decade of 3C technologies: insights into nuclear organization
    de Wit, Elzo
    de laat, Wouter
    [J]. GENES & DEVELOPMENT, 2012, 26 (01) : 11 - 24
  • [6] Capturing chromosome conformation
    Dekker, J
    Rippe, K
    Dekker, M
    Kleckner, N
    [J]. SCIENCE, 2002, 295 (5558) : 1306 - 1311
  • [7] Topological domains in mammalian genomes identified by analysis of chromatin interactions
    Dixon, Jesse R.
    Selvaraj, Siddarth
    Yue, Feng
    Kim, Audrey
    Li, Yan
    Shen, Yin
    Hu, Ming
    Liu, Jun S.
    Ren, Bing
    [J]. NATURE, 2012, 485 (7398) : 376 - 380
  • [8] A three-dimensional model of the yeast genome
    Duan, Zhijun
    Andronescu, Mirela
    Schutz, Kevin
    McIlwain, Sean
    Kim, Yoo Jung
    Lee, Choli
    Shendure, Jay
    Fields, Stanley
    Blau, C. Anthony
    Noble, William S.
    [J]. NATURE, 2010, 465 (7296) : 363 - 367
  • [9] Hu M, 2012, BIOINFORMATICS
  • [10] Imakaev M, 2012, NAT METHODS, V9, P999, DOI [10.1038/nmeth.2148, 10.1038/NMETH.2148]