Retrieving the intracellular topology from multi-scale protein mobility mapping in living cells

被引:116
|
作者
Baum, Michael [1 ,2 ]
Erdel, Fabian [1 ,2 ]
Wachsmuth, Malte [3 ]
Rippe, Karsten [1 ,2 ]
机构
[1] Deutsch Krebsforschungszentrum DKFZ, D-69120 Heidelberg, Germany
[2] BioQuant, Res Grp Genome Org & Funct, D-69120 Heidelberg, Germany
[3] European Mol Biol Lab, Cell Biol & Biophys Unit, D-69117 Heidelberg, Germany
来源
NATURE COMMUNICATIONS | 2014年 / 5卷
关键词
FLUORESCENCE CORRELATION SPECTROSCOPY; TIME-DEPENDENT DIFFUSION; IN-VIVO; CHROMATIN ACCESSIBILITY; NUCLEAR ARCHITECTURE; DYNAMIC ORGANIZATION; ANOMALOUS DIFFUSION; MEMBRANE DYNAMICS; POROUS-MEDIA; GEOMETRY;
D O I
10.1038/ncomms5494
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In living cells, most proteins diffuse over distances of micrometres within seconds. Protein translocation is constrained due to the cellular organization into subcompartments that impose diffusion barriers and guide enzymatic activities to their targets. Here, we introduce an approach to retrieve structural features from the scale-dependent mobility of green fluorescent protein monomer and multimers in human cells. We measure protein transport simultaneously between hundreds of positions by multi-scale fluorescence cross-correlation spectroscopy using a line-illuminating confocal microscope. From these data we derive a quantitative model of the intracellular architecture that resembles a random obstacle network for diffusing proteins. This topology partitions the cellular content and increases the dwell time of proteins in their local environment. The accessibility of obstacle surfaces depends on protein size. Our method links multi-scale mobility measurements with a quantitative description of intracellular structure that can be applied to evaluate how drug-induced perturbations affect protein transport and interactions.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Multi-scale Web Mapping for Geoheritage Visualisation and Promotion
    Martin, S.
    Reynard, E.
    Ondicol, R. Pellitero
    Ghiraldi, L.
    GEOHERITAGE, 2014, 6 (02) : 141 - 148
  • [22] Multi-scale Web Mapping for Geoheritage Visualisation and Promotion
    S. Martin
    E. Reynard
    R. Pellitero Ondicol
    L. Ghiraldi
    Geoheritage, 2014, 6 : 141 - 148
  • [23] A Tone Mapping Algorithm Based on Multi-scale Decomposition
    Li, Weizhong
    Yi, Benshun
    Huang, Taiqi
    Yao, Weiqing
    Peng, Hong
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2016, 10 (04): : 1846 - 1863
  • [24] Cuttlefish: Color Mapping for Dynamic Multi-Scale Visualizations
    Waldin, N.
    Waldner, M.
    Le Muzic, M.
    Groeller, E.
    Goodsell, D. S.
    Autin, L.
    Olson, A. J.
    Viola, I.
    COMPUTER GRAPHICS FORUM, 2019, 38 (06) : 150 - 164
  • [25] A robust multi-scale approach to quantitative susceptibility mapping
    Acosta-Cabronero, Julio
    Milovic, Carlos
    Mattern, Hendrik
    Tejos, Cristian
    Speck, Oliver
    Callaghan, Martina F.
    NEUROIMAGE, 2018, 183 : 7 - 24
  • [26] Block-spectral mapping for multi-scale solution
    He, L.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 250 : 13 - 26
  • [27] Multi-scale digital soil mapping with deep learning
    Behrens, Thorsten
    Schmidt, Karsten
    MacMillan, Robert A.
    Rossel, Raphael A. Viscarra
    SCIENTIFIC REPORTS, 2018, 8
  • [28] Multi-scale digital soil mapping with deep learning
    Thorsten Behrens
    Karsten Schmidt
    Robert A. MacMillan
    Raphael A. Viscarra Rossel
    Scientific Reports, 8
  • [29] MAPPING HIPPOCAMPAL ATROPHY WITH A MULTI-SCALE MODEL OF SHAPE
    Liu, Xinyang
    Shi, Yonggang
    Morra, Jonathan
    Liu, Xiuwen
    Thompson, Paul
    Mio, Washington
    2009 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1 AND 2, 2009, : 879 - +
  • [30] Multi-scale Adaptive Sampling for Mapping Forest Fires
    Mysorewala, M. F.
    Popa, D. O.
    2008 IEEE/RSJ INTERNATIONAL CONFERENCE ON ROBOTS AND INTELLIGENT SYSTEMS, VOLS 1-3, CONFERENCE PROCEEDINGS, 2008, : 3400 - 3407