Retrieving the intracellular topology from multi-scale protein mobility mapping in living cells

被引:116
|
作者
Baum, Michael [1 ,2 ]
Erdel, Fabian [1 ,2 ]
Wachsmuth, Malte [3 ]
Rippe, Karsten [1 ,2 ]
机构
[1] Deutsch Krebsforschungszentrum DKFZ, D-69120 Heidelberg, Germany
[2] BioQuant, Res Grp Genome Org & Funct, D-69120 Heidelberg, Germany
[3] European Mol Biol Lab, Cell Biol & Biophys Unit, D-69117 Heidelberg, Germany
来源
NATURE COMMUNICATIONS | 2014年 / 5卷
关键词
FLUORESCENCE CORRELATION SPECTROSCOPY; TIME-DEPENDENT DIFFUSION; IN-VIVO; CHROMATIN ACCESSIBILITY; NUCLEAR ARCHITECTURE; DYNAMIC ORGANIZATION; ANOMALOUS DIFFUSION; MEMBRANE DYNAMICS; POROUS-MEDIA; GEOMETRY;
D O I
10.1038/ncomms5494
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In living cells, most proteins diffuse over distances of micrometres within seconds. Protein translocation is constrained due to the cellular organization into subcompartments that impose diffusion barriers and guide enzymatic activities to their targets. Here, we introduce an approach to retrieve structural features from the scale-dependent mobility of green fluorescent protein monomer and multimers in human cells. We measure protein transport simultaneously between hundreds of positions by multi-scale fluorescence cross-correlation spectroscopy using a line-illuminating confocal microscope. From these data we derive a quantitative model of the intracellular architecture that resembles a random obstacle network for diffusing proteins. This topology partitions the cellular content and increases the dwell time of proteins in their local environment. The accessibility of obstacle surfaces depends on protein size. Our method links multi-scale mobility measurements with a quantitative description of intracellular structure that can be applied to evaluate how drug-induced perturbations affect protein transport and interactions.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Retrieving the intracellular topology from multi-scale protein mobility mapping in living cells
    Michael Baum
    Fabian Erdel
    Malte Wachsmuth
    Karsten Rippe
    Nature Communications, 5
  • [2] Topology optimization of multi-scale structures: a review
    Jun Wu
    Ole Sigmund
    Jeroen P. Groen
    Structural and Multidisciplinary Optimization, 2021, 63 : 1455 - 1480
  • [3] Topology optimization of multi-scale structures: a review
    Wu, Jun
    Sigmund, Ole
    Groen, Jeroen P.
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2021, 63 (03) : 1455 - 1480
  • [4] Multi-scale geochemical mapping in China
    Xie, Xuejing
    Wang, Xueqiu
    Zhang, Qin
    Zhou, Guohua
    Cheng, Hangxin
    Liu, Dawen
    Cheng, Zhizhong
    Xu, Shanfa
    GEOCHEMISTRY-EXPLORATION ENVIRONMENT ANALYSIS, 2008, 8 : 333 - 341
  • [5] Multi-Scale Topology of Residual Network for Haze Removal
    Ge, Yusheng
    Lu, Yang
    Lin, Sen
    Su, Yiming
    Yang, Zhenshuo
    Tian, Jiandong
    INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2024, PT II, 2025, 15202 : 62 - 76
  • [6] Spectral decomposition for graded multi-scale topology optimization
    Kumar, Tej
    Sridhara, Saketh
    Prabhune, Bhagyashree
    Suresh, Krishnan
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 377
  • [7] Multi-scale magnetic mapping of serpentinite carbonation
    Tominaga, Masako
    Beinlich, Andreas
    Lima, Eduardo A.
    Tivey, Maurice A.
    Hampton, Brian A.
    Weiss, Benjamin
    Harigane, Yumiko
    NATURE COMMUNICATIONS, 2017, 8
  • [8] A multi-scale method of mapping urban influence
    Wade, Timothy G.
    Wickham, James D.
    Zacarelli, Nicola
    Riitters, Kurt H.
    ENVIRONMENTAL MODELLING & SOFTWARE, 2009, 24 (10) : 1252 - 1256
  • [9] Multi-scale magnetic mapping of serpentinite carbonation
    Masako Tominaga
    Andreas Beinlich
    Eduardo A. Lima
    Maurice A. Tivey
    Brian A. Hampton
    Benjamin Weiss
    Yumiko Harigane
    Nature Communications, 8
  • [10] A Multi-Scale Approach to Mapping Canopy Height
    Green, Gordon M.
    Ahearn, Sean C.
    Ni-Meister, Wenge
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2013, 79 (02): : 185 - 194