PSO-Optimized Negative Selection Algorithm for Anomaly Detection

被引:10
作者
Wang, Huimin [1 ]
Gao, X. Z. [2 ]
Huang, Xianlin [1 ]
Song, Zhuoyue [1 ]
机构
[1] Harbin Inst Technol, Ctr Control Theory & Guidance Technol, Harbin 150006, Peoples R China
[2] Aalto Univ, Institute of Intelligent Power Electronics, FIN-02150 Espoo, Finland
来源
APPLICATIONS OF SOFT COMPUTING: UPDATING THE STATE OF THE ART | 2009年 / 52卷
基金
芬兰科学院;
关键词
Anomaly detection; artificial immune system; negative selection algorithm; particle swarm optimization; self-nonself discrimination;
D O I
10.1007/978-3-540-88079-0_2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, the Particle Swarm Optimization (PSO) is used to optimize the randomly generated detectors in the Negative Selection Algorithm (NSA). In our method. with a certain number of detectors. the coverage of the non-self space is maximized, while the coverage of the self samples is minimized. Simulations are performed using both synthetic and real-world data sets. Experimental results show that the proposed algorithm has remarkable advantages over the original NSA.
引用
收藏
页码:13 / +
页数:2
相关论文
共 10 条
  • [1] [Anonymous], 2017, INAC 2017 INT NUCL A
  • [2] DASGUPTA D, 2004, P 3 INT C ART IMM SY, P1
  • [3] Dasgupta D., 1996, P INT C INT SYST JUN, P87
  • [4] An immunological approach to change detection: Algorithms, analysis and implications
    Dhaeseleer, P
    Forrest, S
    Helman, P
    [J]. 1996 IEEE SYMPOSIUM ON SECURITY AND PRIVACY, PROCEEDINGS, 1996, : 110 - 119
  • [5] Forrest S., 1994, Proceedings of 1994 IEEE Computer Society Symposium on Research in Security and Privacy (Cat. No.94CH3444-7), P202, DOI 10.1109/RISP.1994.296580
  • [6] Gonzalez F, 2002, IEEE C EVOL COMPUTAT, P705, DOI 10.1109/CEC.2002.1007012
  • [7] Architecture for an Artificial Immune System
    Hofmeyr, Steven A.
    Forrest, Stephanie
    [J]. EVOLUTIONARY COMPUTATION, 2000, 8 (04) : 443 - 473
  • [8] JI Z, 2004, P C EV COMP CEC PORT
  • [9] JI Z, 2004, P GEN EV COMP C GECC
  • [10] Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968