Self-Powered Piezoelectric Nanogenerator Based on Wurtzite ZnO Nanoparticles for Energy Harvesting Application

被引:32
作者
Rahman, Wahida [1 ]
Garain, Samiran [1 ]
Sultana, Ayesha [1 ]
Middya, Tapas Ranjan [1 ]
Mandal, Dipankar [1 ]
机构
[1] Jadavpur Univ, Dept Phys, Organ Nanopiezoelect Device Lab, Kolkata 700032, India
关键词
Hydrothermal synthesis; ZnO nanoparticles; flexible piezoelectric nanogenerator; capacitor charging; self-powered mechanical energy harvester;
D O I
10.1016/j.matpr.2017.10.173
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report the synthesis procedure of hexagonal wurtzite structure of zinc oxide (ZnO) nanoparticles via hydrothermal route to use as a main component of piezoelectric nanogenerator. The ZnO nanoparticles are dispersed into polydimethylsiloxane (PDMS) to fabricate the high performance flexible piezoelectric nanogenerator (FPNG). The output voltage and power generated from the FPNG is around 20 V and 20 mu W respectively. It is also capable to charge up the capacitors within very short span of time (for example, about 2V is reached at 96s). It is demonstrated that the output power generated from the FPNG can directly drive several commercial blue light emitting diodes (LEDs) that ensuring the applicability as a self-powered energy harvester. (C) 2017 Elsevier Ltd. All rights reserved. Selection and/or Peer-review under responsibility of International Conference on Functional Nano-Materials, 2016.
引用
收藏
页码:9826 / 9830
页数:5
相关论文
共 17 条
[1]   Hydrothermal growth of ZnO nanostructures [J].
Baruah, Sunandan ;
Dutta, Joydeep .
SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2009, 10 (01)
[2]   1.6 V Nanogenerator for Mechanical Energy Harvesting Using PZT Nanofibers [J].
Chen, Xi ;
Xu, Shiyou ;
Yao, Nan ;
Shi, Yong .
NANO LETTERS, 2010, 10 (06) :2133-2137
[3]   Surface piezoelectricity: Size effects in nanostructures and the emergence of piezoelectricity in non-piezoelectric materials [J].
Dai, Shuangxing ;
Gharbi, Mohamed ;
Sharma, Pradeep ;
Park, Harold S. .
JOURNAL OF APPLIED PHYSICS, 2011, 110 (10)
[4]   Biomechanical energy harvesting: Generating electricity during walking with minimal user effort [J].
Donelan, J. M. ;
Li, Q. ;
Naing, V. ;
Hoffer, J. A. ;
Weber, D. J. ;
Kuo, A. D. .
SCIENCE, 2008, 319 (5864) :807-810
[5]   Design of In Situ Poled Ce3+-Doped Electrospun PVDF/Graphene Composite Nanofibers for Fabrication of Nanopressure Sensor and Ultrasensitive Acoustic Nanogenerator [J].
Garain, Samiran ;
Jana, Santanu ;
Sinha, Tridib Kumar ;
Mandal, Dipankar .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (07) :4532-4540
[6]   Photopatternable nano-composite (SU-8/ZnO) thin films for piezo-electric applications [J].
Kandpal, Manoj ;
Sharan, Chandrashekhar ;
Poddar, Pankaj ;
Prashanthi, K. ;
Apte, Prakash R. ;
Rao, V. Ramgopal .
APPLIED PHYSICS LETTERS, 2012, 101 (10)
[7]   PDMS-based Triboelectric and Transparent Nanogenerators with ZnO Nanorod Arrays [J].
Ko, Yeong Hwan ;
Nagaraju, Goli ;
Lee, Soo Hyun ;
Yu, Jae Su .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (09) :6631-6637
[8]   Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology [J].
Ma, WL ;
Yang, CY ;
Gong, X ;
Lee, K ;
Heeger, AJ .
ADVANCED FUNCTIONAL MATERIALS, 2005, 15 (10) :1617-1622
[9]   Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect [J].
Majdoub, M. S. ;
Sharma, P. ;
Cagin, T. .
PHYSICAL REVIEW B, 2008, 77 (12)
[10]   Piezoelectric BaTiO3 Thin Film Nanogenerator on Plastic Substrates [J].
Park, Kwi-Il ;
Xu, Sheng ;
Liu, Ying ;
Hwang, Geon-Tae ;
Kang, Suk-Joong L. ;
Wang, Zhong Lin ;
Lee, Keon Jae .
NANO LETTERS, 2010, 10 (12) :4939-4943