Towards Open-Domain Semantic Role Labeling

被引:0
|
作者
Croce, Danilo [1 ]
Giannone, Cristina [1 ]
Annesi, Paolo [1 ]
Basili, Roberto [1 ]
机构
[1] Univ Roma, Dept Comp Sci Syst & Prod, Tor Vergata, Italy
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Current Semantic Role Labeling technologies are based on inductive algorithms trained over large scale repositories of annotated examples. Frame-based systems currently make use of the FrameNet database but fail to show suitable generalization capabilities in out-of-domain scenarios. In this paper, a state-of-art system for frame-based SRL is extended through the encapsulation of a distributional model of semantic similarity. The resulting argument classification model promotes a simpler feature space that limits the potential overfitting effects. The large scale empirical study here discussed confirms that state-of-art accuracy can be obtained for out-of-domain evaluations.
引用
收藏
页码:237 / 246
页数:10
相关论文
共 50 条
  • [31] Recipes for Building an Open-Domain Chatbot
    Roller, Stephen
    Dinan, Emily
    Goyal, Naman
    Ju, Da
    Williamson, Mary
    Liu, Yinhan
    Xu, Jing
    Ott, Myle
    Shuster, Kurt
    Smith, Eric M.
    Boureau, Y-Lan
    Weston, Jason
    16TH CONFERENCE OF THE EUROPEAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (EACL 2021), 2021, : 300 - 325
  • [32] Unsupervised Open-domain Keyphrase Generation
    Lam Thanh Do
    Akash, Pritom Saha
    Chang, Kevin Chen-Chuan
    PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2023): LONG PAPERS, VOL 1, 2023, : 10614 - 10627
  • [33] Challenges to Open-Domain Constituency Parsing
    Yang, Sen
    Cui, Leyang
    Ning, Ruoxi
    Wu, Di
    Zhang, Yue
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), 2022, : 112 - 127
  • [34] On Monotonic Aggregation for Open-domain QA
    Han, Sang-eun
    Jeong, Yeonseok
    Hwang, Seung-won
    Lee, Kyungjae
    INTERSPEECH 2023, 2023, : 3432 - 3436
  • [35] Entity Resolution in Open-domain Conversations
    Shang, Mingyue
    Wang, Tong
    Eric, Mihail
    Chen, Jiangning
    Wang, Jiyang
    Welch, Matthew
    Deng, Tiantong
    Grewal, Akshay
    Wang, Han
    Liu, Yue
    Kiss, Imre
    Liu, Yang
    Hakkani-Tur, Dilek
    2021 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, NAACL-HLT 2021, 2021, : 26 - 33
  • [36] Towards Credible Human Evaluation of Open-Domain Dialog Systems Using Interactive Setup
    Liu, Sijia
    Lange, Patrick
    Hedayatnia, Behnam
    Papangelis, Alexandros
    Jin, Di
    Wirth, Andrew
    Liu, Yang
    Hakkani-Tur, Dilek
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 11, 2023, : 13264 - 13272
  • [37] PLATO-2: Towards Building an Open-Domain Chatbot via Curriculum Learning
    Bao, Siqi
    He, Huang
    Wang, Fan
    Wu, Hua
    Wang, Haifeng
    Wu, Wenquan
    Guo, Zhen
    Liu, Zhibin
    Xu, Xinchao
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, 2021, : 2513 - 2525
  • [38] SPAGHETTI: Open-Domain Question Answering from Heterogeneous Data Sources with Retrieval and Semantic Parsing
    Zhang, Heidi C.
    Semnani, Sina J.
    Ghassemi, Farhad
    Xu, Jialiang
    Liu, Shicheng
    Lam, Monica S.
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: ACL 2024, 2024, : 1663 - 1678
  • [39] Type checking in open-domain question answering
    Schlobach, S
    Olsthoorn, M
    de Rijke, M
    ECAI 2004: 16TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2004, 110 : 398 - 402
  • [40] Detrimental Contexts in Open-Domain Question Answering
    Oh, Philhoon
    Thorne, James
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (EMNLP 2023), 2023, : 11589 - 11605