Development and Validation of an Automated Radiomic CT Signature for Detecting COVID-19

被引:43
作者
Guiot, Julien [1 ]
Vaidyanathan, Akshayaa [2 ,3 ]
Deprez, Louis [4 ]
Zerka, Fadila [2 ,3 ]
Danthine, Denis [4 ]
Frix, Anne-Noelle [1 ]
Thys, Marie [5 ]
Henket, Monique [1 ]
Canivet, Gregory [6 ]
Mathieu, Stephane [6 ]
Eftaxia, Evanthia [4 ]
Lambin, Philippe [3 ]
Tsoutzidis, Nathan [2 ]
Miraglio, Benjamin [2 ]
Walsh, Sean [2 ]
Moutschen, Michel [7 ]
Louis, Renaud [1 ]
Meunier, Paul [4 ]
Vos, Wim [2 ]
Leijenaar, Ralph T. H. [2 ]
Lovinfosse, Pierre [8 ]
机构
[1] Univ Hosp Liege, Dept Pneumol, B-4020 Liege, Belgium
[2] Oncoradi SA, Res & Dev, B-4000 Liege, Belgium
[3] Maastricht Univ, Dept Precis Med, D Lab, NL-6229 Maastricht, Netherlands
[4] Univ Hosp Liege, Dept Radiol, B-4020 Liege, Belgium
[5] Univ Hosp Liege, Dept Medicoecon Informat, B-4020 Liege, Belgium
[6] Univ Hosp Liege, Dept Comp Applicat, B-4020 Liege, Belgium
[7] Univ Hosp Liege, Dept Infect Dis, B-4020 Liege, Belgium
[8] Univ Hosp Liege, Dept Nucl Med & Oncol Imaging, B-4020 Liege, Belgium
基金
欧盟地平线“2020”;
关键词
artificial intelligence; machine learning; computed tomography; COVID-19; radiomics; IMAGES;
D O I
10.3390/diagnostics11010041
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The coronavirus disease 2019 (COVID-19) outbreak has reached pandemic status. Drastic measures of social distancing are enforced in society and healthcare systems are being pushed to and beyond their limits. To help in the fight against this threat on human health, a fully automated AI framework was developed to extract radiomics features from volumetric chest computed tomography (CT) exams. The detection model was developed on a dataset of 1381 patients (181 COVID-19 patients plus 1200 non COVID control patients). A second, independent dataset of 197 RT-PCR confirmed COVID-19 patients and 500 control patients was used to assess the performance of the model. Diagnostic performance was assessed by the area under the receiver operating characteristic curve (AUC). The model had an AUC of 0.882 (95% CI: 0.851-0.913) in the independent test dataset (641 patients). The optimal decision threshold, considering the cost of false negatives twice as high as the cost of false positives, resulted in an accuracy of 85.18%, a sensitivity of 69.52%, a specificity of 91.63%, a negative predictive value (NPV) of 94.46% and a positive predictive value (PPV) of 59.44%. Benchmarked against RT-PCR confirmed cases of COVID-19, our AI framework can accurately differentiate COVID-19 from routine clinical conditions in a fully automated fashion. Thus, providing rapid accurate diagnosis in patients suspected of COVID-19 infection, facilitating the timely implementation of isolation procedures and early intervention.
引用
收藏
页数:15
相关论文
共 41 条
[11]   Artificial intelligence for the detection of COVID-19 pneumonia on chest CT using multinational datasets [J].
Harmon, Stephanie A. ;
Sanford, Thomas H. ;
Xu, Sheng ;
Turkbey, Evrim B. ;
Roth, Holger ;
Xu, Ziyue ;
Yang, Dong ;
Myronenko, Andriy ;
Anderson, Victoria ;
Amalou, Amel ;
Blain, Maxime ;
Kassin, Michael ;
Long, Dilara ;
Varble, Nicole ;
Walker, Stephanie M. ;
Bagci, Ulas ;
Ierardi, Anna Maria ;
Stellato, Elvira ;
Plensich, Guido Giovanni ;
Franceschelli, Giuseppe ;
Girlando, Cristiano ;
Irmici, Giovanni ;
Labella, Dominic ;
Hammoud, Dima ;
Malayeri, Ashkan ;
Jones, Elizabeth ;
Summers, Ronald M. ;
Choyke, Peter L. ;
Xu, Daguang ;
Flores, Mona ;
Tamura, Kaku ;
Obinata, Hirofumi ;
Mori, Hitoshi ;
Patella, Francesca ;
Cariati, Maurizio ;
Carrafiello, Gianpaolo ;
An, Peng ;
Wood, Bradford J. ;
Turkbey, Baris .
NATURE COMMUNICATIONS, 2020, 11 (01)
[12]   A role for CT in COVID-19? What data really tell us so far [J].
Hope, Michael D. ;
Raptis, Constantine A. ;
Shah, Amar ;
Hammer, Mark M. ;
Henry, Travis S. .
LANCET, 2020, 395 (10231) :1189-1190
[13]   Chest Computed Tomography for Detection of Coronavirus Disease 2019 (COVID-19): Don't Rush the Science [J].
Hope, Michael D. ;
Raptis, Constantine A. ;
Henry, Travis S. .
ANNALS OF INTERNAL MEDICINE, 2020, 173 (02) :147-+
[14]   Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China [J].
Huang, Chaolin ;
Wang, Yeming ;
Li, Xingwang ;
Ren, Lili ;
Zhao, Jianping ;
Hu, Yi ;
Zhang, Li ;
Fan, Guohui ;
Xu, Jiuyang ;
Gu, Xiaoying ;
Cheng, Zhenshun ;
Yu, Ting ;
Xia, Jiaan ;
Wei, Yuan ;
Wu, Wenjuan ;
Xie, Xuelei ;
Yin, Wen ;
Li, Hui ;
Liu, Min ;
Xiao, Yan ;
Gao, Hong ;
Guo, Li ;
Xie, Jungang ;
Wang, Guangfa ;
Jiang, Rongmeng ;
Gao, Zhancheng ;
Jin, Qi ;
Wang, Jianwei ;
Cao, Bin .
LANCET, 2020, 395 (10223) :497-506
[15]   CT screening for early diagnosis of SARS-CoV-2 infection [J].
Huang, Yongshun ;
Cheng, Weibin ;
Zhao, Na ;
Qu, Hongying ;
Tian, Junzhang .
LANCET INFECTIOUS DISEASES, 2020, 20 (09) :1010-1011
[16]   Chest CT in COVID-19 pneumonia: A review of current knowledge [J].
Jalaber, C. ;
Lapotre, T. ;
Morcet-Delattre, T. ;
Ribet, F. ;
Jouneau, S. ;
Lederlin, M. .
DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2020, 101 (7-8) :431-437
[17]   How Might AI and Chest Imaging Help Unravel COVID-19's Mysteries? [J].
Kundu, Shinjini ;
Elhalawani, Hesham ;
Gichoya, Judy W. ;
Kahn, Charles E., Jr. .
RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2020, 2 (03)
[18]   Radiomics: the bridge between medical imaging and personalized medicine [J].
Lambin, Philippe ;
Leijenaar, Ralph T. H. ;
Deist, Timo M. ;
Peerlings, Jurgen ;
de Jong, Evelyn E. C. ;
van Timmeren, Janita ;
Sanduleanu, Sebastian ;
Larue, Ruben T. H. M. ;
Even, Aniek J. G. ;
Jochems, Arthur ;
van Wijk, Yvonka ;
Woodruff, Henry ;
van Soest, Johan ;
Lustberg, Tim ;
Roelofs, Erik ;
van Elmpt, Wouter ;
Dekker, Andre ;
Mottaghy, Felix M. ;
Wildberger, Joachim E. ;
Walsh, Sean .
NATURE REVIEWS CLINICAL ONCOLOGY, 2017, 14 (12) :749-762
[19]   Radiomics: Extracting more information from medical images using advanced feature analysis [J].
Lambin, Philippe ;
Rios-Velazquez, Emmanuel ;
Leijenaar, Ralph ;
Carvalho, Sara ;
van Stiphout, Ruud G. P. M. ;
Granton, Patrick ;
Zegers, Catharina M. L. ;
Gillies, Robert ;
Boellard, Ronald ;
Dekker, Andre ;
Aerts, Hugo J. W. L. .
EUROPEAN JOURNAL OF CANCER, 2012, 48 (04) :441-446
[20]   Development and validation of a radiomic signature to predict HPV (p16) status from standard CT imaging: a multicenter study [J].
Leijenaar, Ralph T. H. ;
Bogowicz, Marta ;
Jochems, Arthur ;
Hoebers, Frank J. P. ;
Wesseling, Frederik W. R. ;
Huang, Sophie H. ;
Chan, Biu ;
Waldron, John N. ;
O'Sullivan, Brian ;
Rietveld, Derek ;
Leemans, C. Rene ;
Brakenhoff, Ruud H. ;
Riesterer, Oliver ;
Tanadini-Lang, Stephanie ;
Guckenberger, Matthias ;
Ikenberg, Kristian ;
Lambin, Philippe .
BRITISH JOURNAL OF RADIOLOGY, 2018, 91 (1086)