Development and Validation of an Automated Radiomic CT Signature for Detecting COVID-19

被引:43
作者
Guiot, Julien [1 ]
Vaidyanathan, Akshayaa [2 ,3 ]
Deprez, Louis [4 ]
Zerka, Fadila [2 ,3 ]
Danthine, Denis [4 ]
Frix, Anne-Noelle [1 ]
Thys, Marie [5 ]
Henket, Monique [1 ]
Canivet, Gregory [6 ]
Mathieu, Stephane [6 ]
Eftaxia, Evanthia [4 ]
Lambin, Philippe [3 ]
Tsoutzidis, Nathan [2 ]
Miraglio, Benjamin [2 ]
Walsh, Sean [2 ]
Moutschen, Michel [7 ]
Louis, Renaud [1 ]
Meunier, Paul [4 ]
Vos, Wim [2 ]
Leijenaar, Ralph T. H. [2 ]
Lovinfosse, Pierre [8 ]
机构
[1] Univ Hosp Liege, Dept Pneumol, B-4020 Liege, Belgium
[2] Oncoradi SA, Res & Dev, B-4000 Liege, Belgium
[3] Maastricht Univ, Dept Precis Med, D Lab, NL-6229 Maastricht, Netherlands
[4] Univ Hosp Liege, Dept Radiol, B-4020 Liege, Belgium
[5] Univ Hosp Liege, Dept Medicoecon Informat, B-4020 Liege, Belgium
[6] Univ Hosp Liege, Dept Comp Applicat, B-4020 Liege, Belgium
[7] Univ Hosp Liege, Dept Infect Dis, B-4020 Liege, Belgium
[8] Univ Hosp Liege, Dept Nucl Med & Oncol Imaging, B-4020 Liege, Belgium
基金
欧盟地平线“2020”;
关键词
artificial intelligence; machine learning; computed tomography; COVID-19; radiomics; IMAGES;
D O I
10.3390/diagnostics11010041
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The coronavirus disease 2019 (COVID-19) outbreak has reached pandemic status. Drastic measures of social distancing are enforced in society and healthcare systems are being pushed to and beyond their limits. To help in the fight against this threat on human health, a fully automated AI framework was developed to extract radiomics features from volumetric chest computed tomography (CT) exams. The detection model was developed on a dataset of 1381 patients (181 COVID-19 patients plus 1200 non COVID control patients). A second, independent dataset of 197 RT-PCR confirmed COVID-19 patients and 500 control patients was used to assess the performance of the model. Diagnostic performance was assessed by the area under the receiver operating characteristic curve (AUC). The model had an AUC of 0.882 (95% CI: 0.851-0.913) in the independent test dataset (641 patients). The optimal decision threshold, considering the cost of false negatives twice as high as the cost of false positives, resulted in an accuracy of 85.18%, a sensitivity of 69.52%, a specificity of 91.63%, a negative predictive value (NPV) of 94.46% and a positive predictive value (PPV) of 59.44%. Benchmarked against RT-PCR confirmed cases of COVID-19, our AI framework can accurately differentiate COVID-19 from routine clinical conditions in a fully automated fashion. Thus, providing rapid accurate diagnosis in patients suspected of COVID-19 infection, facilitating the timely implementation of isolation procedures and early intervention.
引用
收藏
页数:15
相关论文
共 41 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]   Correlation of Chest CT and RT-PCR Testing for Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases [J].
Ai, Tao ;
Yang, Zhenlu ;
Hou, Hongyan ;
Zhan, Chenao ;
Chen, Chong ;
Lv, Wenzhi ;
Tao, Qian ;
Sun, Ziyong ;
Xia, Liming .
RADIOLOGY, 2020, 296 (02) :E32-E40
[3]  
[Anonymous], LEV EV MARCH 2009 CE
[4]   End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography [J].
Ardila, Diego ;
Kiraly, Atilla P. ;
Bharadwaj, Sujeeth ;
Choi, Bokyung ;
Reicher, Joshua J. ;
Peng, Lily ;
Tse, Daniel ;
Etemadi, Mozziyar ;
Ye, Wenxing ;
Corrado, Greg ;
Naidich, David P. ;
Shetty, Shravya .
NATURE MEDICINE, 2019, 25 (06) :954-+
[5]   Artificial Intelligence Augmentation of Radiologist Performance in Distinguishing COVID-19 from Pneumonia of Other Origin at Chest CT [J].
Bai, Harrison X. ;
Wang, Robin ;
Xiong, Zeng ;
Hsieh, Ben ;
Chang, Ken ;
Halsey, Kasey ;
Thi My Linh Tran ;
Choi, Ji Whae ;
Wang, Dong-Cui ;
Shi, Lin-Bo ;
Mei, Ji ;
Jiang, Xiao-Long ;
Pan, Ian ;
Zeng, Qiu-Hua ;
Hu, Ping-Feng ;
Li, Yi-Hui ;
Fu, Fei-Xian ;
Huang, Raymond Y. ;
Sebro, Ronnie ;
Yu, Qi-Zhi ;
Atalay, Michael K. ;
Liao, Wei-Hua .
RADIOLOGY, 2020, 296 (03) :E156-E165
[6]  
Chen J, 2020, medRxiv, DOI [10.1101/2020.02.25.20021568, 10.1101/2020.02.25.20021568, DOI 10.1101/2020.02.25.20021568], Patent No. 2405543
[7]   Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers [J].
Deist, Timo M. ;
Dankers, Frank J. W. M. ;
Valdes, Gilmer ;
Wijsman, Robin ;
Hsu, I-Chow ;
Oberije, Cary ;
Lustberg, Tim ;
van Soest, Johan ;
Hoebers, Frank ;
Jochems, Arthur ;
El Naqa, Issam ;
Wee, Leonard ;
Morin, Olivier ;
Raleigh, David R. ;
Bots, Wouter ;
Kaanders, Johannes H. ;
Belderbos, Jose ;
Kwint, Margriet ;
Solberg, Timothy ;
Monshouwer, Rene ;
Bussink, Johan ;
Dekker, Andre ;
Lambin, Philippe .
MEDICAL PHYSICS, 2018, 45 (07) :3449-3459
[8]   CT radiomics can help screen the Coronavirus disease 2019 (COVID-19): a preliminary study [J].
Fang, Mengjie ;
He, Bingxi ;
Li, Li ;
Dong, Di ;
Yang, Xin ;
Li, Cong ;
Meng, Lingwei ;
Zhong, Lianzhen ;
Li, Hailin ;
Li, Hongjun ;
Tian, Jie .
SCIENCE CHINA-INFORMATION SCIENCES, 2020, 63 (07)
[9]   Sensitivity of Chest CT for COVID-19: Comparison to RT-PCR [J].
Fang, Yicheng ;
Zhang, Huangqi ;
Xie, Jicheng ;
Lin, Minjie ;
Ying, Lingjun ;
Pang, Peipei ;
Ji, Wenbin .
RADIOLOGY, 2020, 296 (02) :E115-E117
[10]   A Novel Machine Learning-derived Radiomic Signature of the Whole Lung Differentiates Stable From Progressive COVID-19 Infection A Retrospective Cohort Study [J].
Fu, Liping ;
Li, Yongchou ;
Cheng, Aiping ;
Pang, PeiPei ;
Shu, Zhenyu .
JOURNAL OF THORACIC IMAGING, 2020, 35 (06) :361-368