Multiple Sclerosis Lesion Segmentation Using Longitudinal Normalization and Convolutional Recurrent Neural Networks

被引:0
作者
Tascon-Morales, Sergio [1 ,2 ,3 ,4 ]
Hoffmann, Stefan [1 ]
Treiber, Martin [1 ]
Mensing, Daniel [1 ]
Oliver, Arnau [2 ]
Guenther, Matthias [1 ,5 ,6 ]
Gregori, Johannes [1 ]
机构
[1] Mediri GmbH, Heidelberg, Germany
[2] Univ Girona, Girona, Spain
[3] Univ Burgundy, Le Creusot, France
[4] Univ Cassino & Southern Lazio, Cassino, Italy
[5] Fraunhofer MEVIS, Bremen, Germany
[6] Univ Bremen, Bremen, Germany
来源
MACHINE LEARNING IN CLINICAL NEUROIMAGING AND RADIOGENOMICS IN NEURO-ONCOLOGY, MLCN 2020, RNO-AI 2020 | 2020年 / 12449卷
关键词
Convolutional neural networks; Multiple sclerosis; Longitudinal normalization;
D O I
10.1007/978-3-030-66843-3_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Magnetic resonance imaging (MRI) is the primary clinical tool to examine inflammatory brain lesions in Multiple Sclerosis (MS). Disease progression and inflammatory activities are examined by longitudinal image analysis to support diagnosis and treatment decision. Automated lesion segmentation methods based on deep convolutional neural networks (CNN) have been proposed, but are not yet applied in the clinical setting. Typical CNNs working on cross-sectional single time-point data have several limitations: changes to the image characteristics between single examinations due to scanner and protocol variations have an impact on the segmentation output, while at the same time the additional temporal correlation using pre-examinations is disregarded. In this work, we investigate approaches to overcome these limitations. Within a CNN architectural design, we propose convolutional Long Short-Term Memory (C-LSTM) networks to incorporate the temporal dimension. To reduce scanner- and protocol dependent variations between single MRI exams, we propose a histogram normalization technique as pre-processing step. The ISBI 2015 challenge data was used for network training and cross-validation. We demonstrate that the combination of the longitudinal normalization and CNN architecture increases the performance and the inter-time-point stability of the lesion segmentation. In the combined solution, the dice coefficient was increased and made more consistent for each subject. The proposed methods can therefore be used to increase the performance and stability of fully automated lesion segmentation applications in the clinical routine or in clinical trials.
引用
收藏
页码:148 / 158
页数:11
相关论文
共 30 条
[1]  
Arnon R, 2016, TRANSLATIONAL NEUROIMMUNOLOGY IN MULTIPLE SCLEROSIS: FROM DISEASE MECHANISMS TO CLINICAL APPLICATIONS, P1
[2]   Multi-branch convolutional neural network for multiple sclerosis lesion segmentation [J].
Aslani, Shahab ;
Dayan, Michael ;
Storelli, Loredana ;
Filippi, Massimo ;
Murino, Vittorio ;
Rocca, Maria A. ;
Sona, Diego .
NEUROIMAGE, 2019, 196 :1-15
[3]   Deep 2D Encoder-Decoder Convolutional Neural Network for Multiple Sclerosis Lesion Segmentation in Brain MRI [J].
Aslani, Shahab ;
Dayan, Michael ;
Murino, Vittorio ;
Sona, Diego .
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT I, 2019, 11383 :132-141
[4]   VoxelMorph: A Learning Framework for Deformable Medical Image Registration [J].
Balakrishnan, Guha ;
Zhao, Amy ;
Sabuncu, Mert R. ;
Guttag, John ;
Dalca, Adrian, V .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (08) :1788-1800
[5]   Deep Autoencoding Models for Unsupervised Anomaly Segmentation in Brain MR Images [J].
Baur, Christoph ;
Wiestler, Benedikt ;
Albarqouni, Shadi ;
Navab, Nassir .
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT I, 2019, 11383 :161-169
[6]   Longitudinal Multiple Sclerosis Lesion Segmentation Using Multi-view Convolutional Neural Networks [J].
Birenbaum, Ariel ;
Greenspan, Hayit .
DEEP LEARNING AND DATA LABELING FOR MEDICAL APPLICATIONS, 2016, 10008 :58-67
[7]   Deep 3D Convolutional Encoder Networks With Shortcuts for Multiscale Feature Integration Applied to Multiple Sclerosis Lesion Segmentation [J].
Brosch, Tom ;
Tang, Lisa Y. W. ;
Yoo, Youngjin ;
Li, David K. B. ;
Traboulsee, Anthony ;
Tam, Roger .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) :1229-1239
[8]   Longitudinal multiple sclerosis lesion segmentation: Resource and challenge [J].
Carass, Aaron ;
Roy, Snehashis ;
Jog, Amod ;
Cuzzocreo, Jennifer L. ;
Magrath, Elizabeth ;
Gherman, Adrian ;
Button, Julia ;
Nguyen, James ;
Prados, Ferran ;
Sudre, Carole H. ;
Cardoso, Manuel Jorge ;
Cawley, Niamh ;
Ciccarelli, Olga ;
Wheeler-Kingshott, Claudia A. M. ;
Ourselin, Sebastien ;
Catanese, Laurence ;
Deshpande, Hrishikesh ;
Maurel, Pierre ;
Commowick, Olivier ;
Barillot, Christian ;
Tomas-Fernandez, Xavier ;
Warfield, Simon K. ;
Vaidya, Suthirth ;
Chunduru, Abhijith ;
Muthuganapathy, Ramanathan ;
Krishnamurthi, Ganapathy ;
Jesson, Andrew ;
Arbel, Tal ;
Maier, Oskar ;
Handeles, Heinz ;
Iheme, Leonardo O. ;
Unay, Devrim ;
Jain, Saurabh ;
Sima, Diana M. ;
Smeets, Dirk ;
Ghafoorian, Mohsen ;
Platel, Bram ;
Birenbaum, Ariel ;
Greenspan, Hayit ;
Bazin, Pierre-Louis ;
Calabresi, Peter A. ;
Crainiceanu, Ciprian M. ;
Ellingsen, Lotta M. ;
Reich, Daniel S. ;
Prince, Jerry L. ;
Pham, Dzung L. .
NEUROIMAGE, 2017, 148 :77-102
[9]  
Cohen J.A., 2012, Handbook of Multiple Sclerosis, VSecond, DOI DOI 10.1007/978-1-907673-50-4
[10]  
Compston A., 2005, McAlpine's multiple sclerosis, V4th