Existence and uniqueness analysis of solutions for Hilfer fractional spectral problems with applications

被引:6
作者
Ercan, Ahu [1 ]
Ozarslan, Ramazan [1 ]
Bas, Erdal [1 ]
机构
[1] Firat Univ, Sci Fac, Dept Math, TR-23119 Elazig, Turkey
关键词
Fractional derivatives; Sturm-Liouville; Eigenfunctions; Eigenvalues; Laplace transform; Banach fixed point theorem; STURM-LIOUVILLE PROBLEM; CALCULUS;
D O I
10.1007/s40314-020-01382-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we define Sturm-Liouville problems through Hilfer fractional derivative operator using its different types. First, we obtain an integral representation of solutions in eight different forms including Riemann-Liouville, Caputo, and ordinary form. These different forms are stemmed from the type of Hilfer fractional derivative. Then, we analyze the existence and uniqueness of solutions for the problem by the Banach fixed point theorem. Moreover, we investigate the behavior of solutions and analyze eigenvalues and eigenfunctions for three-point Hilfer fractional boundary value problem under different values of alpha and types of beta.
引用
收藏
页数:18
相关论文
共 34 条
[1]   Sturm Liouville Equations in the frame of fractional operators with exponential kernels and their discrete versions [J].
Abdeljawad, Thabet ;
Mert, Raziye ;
Peterson, Allan .
QUAESTIONES MATHEMATICAE, 2019, 42 (09) :1271-1289
[2]   Generalized variational calculus in terms of multi-parameters fractional derivatives [J].
Agrawal, Om P. ;
Muslih, Sami I. ;
Baleanu, Dumitru .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (12) :4756-4767
[3]   Fundamental Results of Conformable Sturm-Liouville Eigenvalue Problems [J].
Al-Refai, Mohammed ;
Abdeljawad, Thabet .
COMPLEXITY, 2017,
[4]  
Baleanu D, 2012, PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2011, VOL 3, PTS A AND B, P335
[5]   Theory of discrete fractional Sturm-Liouville equations and visual results [J].
Bas, Erdal ;
Ozarslan, Ramazan .
AIMS MATHEMATICS, 2019, 4 (03) :593-612
[6]   Comparative simulations for solutions of fractional Sturm-Liouville problems with non-singular operators [J].
Bas, Erdal ;
Ozarslan, Ramazan ;
Baleanu, Dumitru ;
Ercan, Ahu .
ADVANCES IN DIFFERENCE EQUATIONS, 2018,
[7]   Sturm-Liouville Problem via Coulomb Type in Difference Equations [J].
Bas, Erdal ;
Ozarslan, Ramazan .
FILOMAT, 2017, 31 (04) :989-998
[8]   The Inverse Nodal problem for the fractional diffusion equation [J].
Bas, Erdal .
ACTA SCIENTIARUM-TECHNOLOGY, 2015, 37 (02) :251-257
[9]   Fractional singular Sturm-Liouville operator for Coulomb potential [J].
Bas, Erdal ;
Metin, Funda .
ADVANCES IN DIFFERENCE EQUATIONS, 2013,
[10]   Deterministic modeling of dysentery diarrhea epidemic under fractional Caputo differential operator via real statistical analysis [J].
Berhe, Hailay Weldegiorgis ;
Qureshi, Sania ;
Shaikh, Asif Ali .
CHAOS SOLITONS & FRACTALS, 2020, 131