Global well-posedness and inviscid limit for the generalized Benjamin-Ono-Burgers equation

被引:1
作者
Mingjuan Chen [1 ]
Guo, Boling [1 ]
Han, Lijia [2 ]
机构
[1] Inst Appl Phys & Computat Math, Beijing, Peoples R China
[2] North China Elect Power Univ, Dept Math & Phys, Beijing, Peoples R China
基金
中国博士后科学基金;
关键词
I; Lasiecka; Generalized Benjamin-Ono-Burgers equation; Cauchy problem; inviscid limit behavior; ILL-POSEDNESS; CAUCHY-PROBLEM; REGULARITY; WAVES;
D O I
10.1080/00036811.2019.1620934
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the Cauchy problem for the generalized Benjamin-Ono-Burgers equation partial derivative(t)u + H partial derivative(2)(x) - nu u(xx) + partial derivative x(u(k+1)/(k + 1)) = 0, k >= 4, where H denotes Hilbert transform. We obtain its global well-posedness results in Besov Spaces if k >= 4 and the initial data in. (B) over dot(2,1)(sk),1 are sufficiently small, where s(k) := 1/2 - 1/k corresponds to the critical scaling regularity index. Furthermore, we prove its global well-posedness and inviscid limit behavior in Sobolev spaces.
引用
收藏
页码:804 / 818
页数:15
相关论文
共 27 条
[1]   NONLOCAL MODELS FOR NONLINEAR, DISPERSIVE WAVES [J].
ABDELOUHAB, L ;
BONA, JL ;
FELLAND, M ;
SAUT, JC .
PHYSICA D, 1989, 40 (03) :360-392
[2]   INTERNAL WAVES OF PERMANENT FORM IN FLUIDS OF GREAT DEPTH [J].
BENJAMIN, TB .
JOURNAL OF FLUID MECHANICS, 1967, 29 :559-&
[3]   Ill-posedness for the derivative Schrodinger and generalized Benjamin-Ono equations [J].
Biagioni, HA ;
Linares, F .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (09) :3649-3659
[4]  
BINIR B, 1996, J LOND MATH SOC, V53, P551, DOI DOI 10.1112/JLMS/53.3.551
[5]   THE BENJAMIN-ONO-BURGERS EQUATION - AN APPLICATION IN SOLAR PHYSICS [J].
EDWIN, PM ;
ROBERTS, B .
WAVE MOTION, 1986, 8 (02) :151-158
[6]  
Fokas A. S., 2000, Differential Integral Equations, V13, P115
[7]   Uniform well-posedness and inviscid limit for the Benjamin-Ono-Burgers equation [J].
Guo, Zihua ;
Peng, Lizhong ;
Wang, Baoxiang ;
Wang, Yuzhao .
ADVANCES IN MATHEMATICS, 2011, 228 (02) :647-677
[8]   Global wellposedness and limit behavior for the generalized finite-depth-fluid equation with small data in critical Besov spaces (B)over-dot2,1s [J].
Han, Lijia ;
Wang, Baoxiang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (08) :2103-2144
[9]   Global well-posedness of the Benjamin-Ono equation in low-regularity spaces [J].
Ionescu, Alexandru D. ;
Kenig, Carlos E. .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 20 (03) :753-798
[10]   ON THE CAUCHY-PROBLEM FOR THE BENJAMIN-ONO-EQUATION [J].
IORIO, RJ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1986, 11 (10) :1031-1081