Solution of the relativistic Dirac-Hulthen problem

被引:32
作者
Alhaidari, AD [1 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Phys, Dhahran 31261, Saudi Arabia
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2004年 / 37卷 / 22期
关键词
D O I
10.1088/0305-4470/37/22/007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The one-particle three-dimensional Dirac equation with spherical symmetry is solved for the Hulthen potential. The s-wave relativistic energy spectrum and two-component spinor wavefunctions are obtained analytically. Conforming to the standard feature of the relativistic problem, the solution space splits into two distinct subspaces depending on the sign of a fundamental parameter in the problem. Unique and interesting properties of the energy spectrum are pointed out and illustrated graphically for several values of the physical parameters. The square integrable two-component wavefunctions are written in terms of the Jacobi polynomials. The nonrelativistic limit reproduces the well-known nonrelativistic energy spectrum and results in Schrodinger equation with a 'generalized' three-parameter Hulthen potential, which is the sum of the original Hulthen potential and its square.
引用
收藏
页码:5805 / 5813
页数:9
相关论文
共 34 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS
[2]   Solution of the Dirac equation for potential interaction [J].
Alhaidari, AD .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2003, 18 (27) :4955-4973
[3]  
ALHAIDARI AD, IN PRESS J MATH PHYS
[4]   PATH INTEGRAL TREATMENT FOR A SCREENED POTENTIAL [J].
BOUDJEDAA, T ;
CHETOUANI, L ;
GUECHI, L ;
HAMMANN, TF .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (02) :441-446
[5]   PATH-INTEGRAL TREATMENT OF THE HULTHEN POTENTIAL [J].
CAI, JM ;
CAI, PY ;
INOMATA, A .
PHYSICAL REVIEW A, 1986, 34 (06) :4621-4628
[6]   Path integral for Klein-Gordon particle in vector plus scalar Hulthen-type potentials [J].
Chetouani, L ;
Guechi, L ;
Lecheheb, A ;
Hammann, TF ;
Messouber, A .
PHYSICA A, 1996, 234 (1-2) :529-544
[7]   BOUND-STATES OF THE KLEIN GORDON EQUATION WITH VECTOR AND SCALAR HULTHEN-TYPE POTENTIALS [J].
DOMINGUEZADAME, F .
PHYSICS LETTERS A, 1989, 136 (4-5) :175-177
[8]   SUPERSYMMETRY, VARIATIONAL METHOD AND HULTHEN POTENTIAL [J].
DRIGO, E ;
RICOTTA, RM .
MODERN PHYSICS LETTERS A, 1995, 10 (22) :1613-1618
[9]   SO(2,1) AND HULTHEN POTENTIAL [J].
DUNLAP, BI ;
ARMSTRONG, L .
PHYSICAL REVIEW A-GENERAL PHYSICS, 1972, 6 (04) :1370-+
[10]   A NEW ANALYTIC APPROXIMATION METHOD FOR THE NON-ZERO ANGULAR-MOMENTUM STATES OF THE HULTHEN POTENTIAL [J].
DUTT, R ;
MUKHERJI, U .
PHYSICS LETTERS A, 1982, 90 (08) :395-398