Solution of the relativistic Dirac-Hulthen problem

被引:32
作者
Alhaidari, AD [1 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Phys, Dhahran 31261, Saudi Arabia
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2004年 / 37卷 / 22期
关键词
D O I
10.1088/0305-4470/37/22/007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The one-particle three-dimensional Dirac equation with spherical symmetry is solved for the Hulthen potential. The s-wave relativistic energy spectrum and two-component spinor wavefunctions are obtained analytically. Conforming to the standard feature of the relativistic problem, the solution space splits into two distinct subspaces depending on the sign of a fundamental parameter in the problem. Unique and interesting properties of the energy spectrum are pointed out and illustrated graphically for several values of the physical parameters. The square integrable two-component wavefunctions are written in terms of the Jacobi polynomials. The nonrelativistic limit reproduces the well-known nonrelativistic energy spectrum and results in Schrodinger equation with a 'generalized' three-parameter Hulthen potential, which is the sum of the original Hulthen potential and its square.
引用
收藏
页码:5805 / 5813
页数:9
相关论文
共 34 条
  • [1] Abramowitz M., 1964, HDB MATH FUNCTIONS
  • [2] Solution of the Dirac equation for potential interaction
    Alhaidari, AD
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2003, 18 (27): : 4955 - 4973
  • [3] ALHAIDARI AD, IN PRESS J MATH PHYS
  • [4] PATH INTEGRAL TREATMENT FOR A SCREENED POTENTIAL
    BOUDJEDAA, T
    CHETOUANI, L
    GUECHI, L
    HAMMANN, TF
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (02) : 441 - 446
  • [5] PATH-INTEGRAL TREATMENT OF THE HULTHEN POTENTIAL
    CAI, JM
    CAI, PY
    INOMATA, A
    [J]. PHYSICAL REVIEW A, 1986, 34 (06): : 4621 - 4628
  • [6] Path integral for Klein-Gordon particle in vector plus scalar Hulthen-type potentials
    Chetouani, L
    Guechi, L
    Lecheheb, A
    Hammann, TF
    Messouber, A
    [J]. PHYSICA A, 1996, 234 (1-2): : 529 - 544
  • [7] BOUND-STATES OF THE KLEIN GORDON EQUATION WITH VECTOR AND SCALAR HULTHEN-TYPE POTENTIALS
    DOMINGUEZADAME, F
    [J]. PHYSICS LETTERS A, 1989, 136 (4-5) : 175 - 177
  • [8] SUPERSYMMETRY, VARIATIONAL METHOD AND HULTHEN POTENTIAL
    DRIGO, E
    RICOTTA, RM
    [J]. MODERN PHYSICS LETTERS A, 1995, 10 (22) : 1613 - 1618
  • [9] SO(2,1) AND HULTHEN POTENTIAL
    DUNLAP, BI
    ARMSTRONG, L
    [J]. PHYSICAL REVIEW A-GENERAL PHYSICS, 1972, 6 (04): : 1370 - +
  • [10] A NEW ANALYTIC APPROXIMATION METHOD FOR THE NON-ZERO ANGULAR-MOMENTUM STATES OF THE HULTHEN POTENTIAL
    DUTT, R
    MUKHERJI, U
    [J]. PHYSICS LETTERS A, 1982, 90 (08) : 395 - 398