Soft Subdivision Search in Motion Planning, II: Axiomatics

被引:2
作者
Yap, Chee K. [1 ]
机构
[1] NYU, Courant Inst Math Sci, Dept Comp Sci, New York, NY 10012 USA
来源
FRONTIERS IN ALGORITHMICS (FAW 2015) | 2015年 / 9130卷
关键词
ALGORITHMS;
D O I
10.1007/978-3-319-19647-3_2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We propose to design motion planning algorithms with a strong form of resolution completeness, called resolution-exactness. Such planners can be implemented using soft predicates within the subdivision paradigm. The advantage of softness is that we avoid the Zero problem and other issues of exact computation. Soft Subdivision Search (SSS) is an algorithmic framework for such planners. There are many parallels between our framework and the well-known Probabilistic Road Map (PRM) framework. Both frameworks lead to algorithms that are practical, flexible, extensible, with adaptive and local complexity. Our several recent papers have demonstrated these favorable properties on various non-trivial motion planning problems. In this paper, we provide a general axiomatic theory underlying these results. We also address the issue of subdivision in non-Euclidean configuration spaces, and how exact algorithms can be recovered using soft methods.
引用
收藏
页码:7 / 22
页数:16
相关论文
共 28 条
[1]  
[Anonymous], 2006, ALGORITHMS COMPUTATI
[2]  
Barbehenn M., 1995, P INT ROB SYST 95 IE, V3, p[39, 5]
[3]   Nondeterministic functions and the existence of optimal proof systems [J].
Beyersdorff, Olaf ;
Koebler, Johannes ;
Messner, Jochen .
THEORETICAL COMPUTER SCIENCE, 2009, 410 (38-40) :3839-3855
[4]  
Brooks R.A., 1983, P 8 INT JOINT C ART, V2, P799
[5]  
Brownawell WD, 2009, ISSAC2009: PROCEEDINGS OF THE 2009 INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, P79
[6]   SqFreeEVAL: An (almost) optimal real-root isolation algorithm [J].
Burr, Michael A. ;
Krahmer, Felix .
JOURNAL OF SYMBOLIC COMPUTATION, 2012, 47 (02) :153-166
[7]  
Cabello S., 2015, ALGOR DAT S IN PRESS
[8]  
Chiang Y.-J., 2011, IROS WORKSH PROGR OP
[9]  
Choset H., 2005, PRINCIPLES ROBOT MOT
[10]   Probabilistic roadmaps for path planning in high-dimensional configuration spaces [J].
Kavraki, LE ;
Svestka, P ;
Latombe, JC ;
Overmars, MH .
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, 1996, 12 (04) :566-580