Asymptotic structure of the attractor for processes on time-dependent spaces

被引:40
作者
Conti, Monica [1 ]
Pata, Vittorino [1 ]
机构
[1] Politecn Milan, Dipartimento Matemat F Brioschi, I-20133 Milan, Italy
关键词
D O I
10.1016/j.nonrwa.2014.02.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We compare the asymptotic structure of the time-dependent attractor A(t) generated by the partial differential equation epsilon u(tt) + alpha u(t) - Delta u + f(u) = g, where the positive function epsilon = epsilon(t) tends to zero as t -> infinity, with the global attractor A(infinity) of its formal limit alpha u(t) - Delta u + f(u) = g. We establish an abstract result and we apply it to the proof of the convergence A(t) -> A(infinity). (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 10 条
[1]  
[Anonymous], 1992, Studies in Mathematics and its Applications
[2]   A MINIMAL APPROACH TO THE THEORY OF GLOBAL ATTRACTORS [J].
Chepyzhov, Vladimir V. ;
Conti, Monica ;
Pata, Vittorino .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (06) :2079-2088
[3]   Attractors for processes on time-dependent spaces. Applications to wave equations [J].
Conti, Monica ;
Pata, Vittorino ;
Temam, Roger .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (06) :1254-1277
[4]  
Di Plinio F., 2012, Bollettino dellUnione Matematica Italiana, V9, P19
[5]   TIME-DEPENDENT ATTRACTOR FOR THE OSCILLON EQUATION [J].
Di Plinio, Francesco ;
Duane, Gregory S. ;
Temam, Roger .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 29 (01) :141-167
[6]  
Hale J. K., 1988, Asymptotic Behavior of Dissipative Systems
[7]   UPPER SEMICONTINUITY OF THE ATTRACTOR FOR A SINGULARLY PERTURBED HYPERBOLIC EQUATION [J].
HALE, JK ;
RAUGEL, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1988, 73 (02) :197-214
[8]  
Haraux A., 1991, SYSTEMES DYNAMIQUES
[9]   COMPACT-SETS IN THE SPACE LP(O, T-B) [J].
SIMON, J .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1986, 146 :65-96
[10]  
Temam R., 1988, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, DOI 10.1007/978-1-4684-0313-8