Risk classification of cancer survival using ANN with gene expression data from multiple laboratories

被引:74
作者
Chen, Yen-Chen [1 ]
Ke, Wan-Chi [1 ]
Chiu, Hung-Wen [1 ]
机构
[1] Taipei Med Univ, Grad Inst Biomed Informat, Taipei, Taiwan
关键词
Microarray; Gene expression; Neural network; Machine learning; Survival analysis; Outcome prediction; Lung cancer; SUPPORT VECTOR MACHINES; BREAST-CANCER; PREDICTION; PPP2R1B; CELLS; HER2; ADENOCARCINOMA; SIGNATURE; CARCINOMA; SELECTION;
D O I
10.1016/j.compbiomed.2014.02.006
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Numerous cancer studies have combined gene expression experiments and clinical survival data to predict the prognosis of patients of specific gene types. However, most results of these studies were data dependent and were not suitable for other data sets. This study performed cross-laboratory validations for the cancer patient data from 4 hospitals. We investigated the feasibility of survival risk predictions using high-throughput gene expression data and clinical data. We analyzed multiple data sets for prognostic applications in lung cancer diagnosis. After building tens of thousands of various ANN architectures using the training data, five survival-time correlated genes were identified from 4 microarray gene expression data sets by examining the correlation between gene signatures and patient survival time. The experimental results showed that gene expression data can be used for valid predictions of cancer patient survival classification with an overall accuracy of 83.0% based on survival time trusted data. The results show the prediction model yielded excellent predictions given that patients in the high-risk group obtained a lower median overall survival compared with low-risk patients (log-rank test P-value < 0.00001). This study provides a foundation for further clinical studies and research into other types of cancer. We hope these findings will improve the prognostic methods of cancer patients. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 44 条
[1]   Gene-expression profiles predict survival of patients with lung adenocarcinoma [J].
Beer, DG ;
Kardia, SLR ;
Huang, CC ;
Giordano, TJ ;
Levin, AM ;
Misek, DE ;
Lin, L ;
Chen, GA ;
Gharib, TG ;
Thomas, DG ;
Lizyness, ML ;
Kuick, R ;
Hayasaka, S ;
Taylor, JMG ;
Iannettoni, MD ;
Orringer, MB ;
Hanash, S .
NATURE MEDICINE, 2002, 8 (08) :816-824
[2]   Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses [J].
Bhattacharjee, A ;
Richards, WG ;
Staunton, J ;
Li, C ;
Monti, S ;
Vasa, P ;
Ladd, C ;
Beheshti, J ;
Bueno, R ;
Gillette, M ;
Loda, M ;
Weber, G ;
Mark, EJ ;
Lander, ES ;
Wong, W ;
Johnson, BE ;
Golub, TR ;
Sugarbaker, DJ ;
Meyerson, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (24) :13790-13795
[3]   Predicting survival from microarray data -: a comparative study [J].
Bovelstad, H. M. ;
Nygard, S. ;
Storvold, H. L. ;
Aldrin, M. ;
Borgan, O. ;
Frigessi, A. ;
Lingjaerde, O. C. .
BIOINFORMATICS, 2007, 23 (16) :2080-2087
[4]  
Burke HB, 1997, CANCER, V79, P857, DOI 10.1002/(SICI)1097-0142(19970215)79:4<857::AID-CNCR24>3.0.CO
[5]  
2-Y
[6]   A five-gene signature and clinical outcome in non-small-cell lung cancer [J].
Chen, Hsuan-Yu ;
Yu, Sung-Liang ;
Chen, Chun-Houh ;
Chang, Gee-Chen ;
Chen, Chih-Yi ;
Yuan, Ang ;
Cheng, Chiou-Ling ;
Wang, Chien-Hsun ;
Terng, Harn-Jing ;
Kao, Shu-Fang ;
Chan, Wing-Kai ;
Li, Han-Ni ;
Liu, Chun-Chi ;
Singh, Sher ;
Chen, Wei J. ;
Chen, Jeremy J. W. ;
Yang, Pan-Chyr .
NEW ENGLAND JOURNAL OF MEDICINE, 2007, 356 (01) :11-20
[7]   Alterations of tumour suppressor gene PPP2R1B in hepatocellular carcinoma [J].
Chou, Huei-Chi ;
Chen, Chien-Hung ;
Lee, Hsuan-Shu ;
Lee, Cha-Ze ;
Huang, Guan-Tarn ;
Yang, Pei-Ming ;
Lee, Po-Huang ;
Sheu, Jin-Chuan .
CANCER LETTERS, 2007, 253 (01) :138-143
[8]   The CD28 and CTLA-4 receptors associate with the serine/threonine phosphatase PP2A [J].
Chuang, E ;
Fisher, TS ;
Morgan, RW ;
Robbins, MD ;
Duerr, JM ;
Vander Heiden, MG ;
Gardner, JP ;
Hambor, JE ;
Neveu, MJ ;
Thompson, CB .
IMMUNITY, 2000, 13 (03) :313-322
[9]   Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells [J].
Dave, SS ;
Wright, G ;
Tan, B ;
Rosenwald, A ;
Gascoyne, RD ;
Chan, WC ;
Fisher, RI ;
Braziel, RM ;
Rimsza, LM ;
Grogan, TM ;
Miller, TP ;
LeBlanc, M ;
Greiner, TC ;
Weisenburger, DD ;
Lynch, JC ;
Vose, J ;
Armitage, JO ;
Smeland, EB ;
Kvaloy, S ;
Holte, H ;
Delabie, J ;
Connors, JM ;
Lansdorp, PM ;
Ouyang, Q ;
Lister, TA ;
Davies, AJ ;
Norton, AJ ;
Muller-Hermelink, HK ;
Ott, G ;
Campo, E ;
Montserrat, E ;
Wilson, WH ;
Jaffe, ES ;
Simon, R ;
Yang, LM ;
Powell, J ;
Zhao, H ;
Goldschmidt, N ;
Chiorazzi, M ;
Staudt, LM .
NEW ENGLAND JOURNAL OF MEDICINE, 2004, 351 (21) :2159-2169
[10]   DUSP6/MKP3 is overexpressed in papillary and poorly differentiated thyroid carcinoma and contributes to neoplastic properties of thyroid cancer cells [J].
Degl'Innocenti, Debora ;
Romeo, Paola ;
Tarantino, Eva ;
Sensi, Marialuisa ;
Cassinelli, Giuliana ;
Catalano, Veronica ;
Lanzi, Cinzia ;
Perrone, Federica ;
Pilotti, Silvana ;
Seregni, Ettore ;
Pierotti, Marco A. ;
Greco, Angela ;
Borrello, Maria Grazia .
ENDOCRINE-RELATED CANCER, 2013, 20 (01) :23-37