Analogue of Maslov's Canonical Operator for Localized Functions and Its Applications to the Description of Rapidly Decaying Asymptotic Solutions of Hyperbolic Equations and Systems

被引:2
|
作者
Nazaikinskii, V. E. [1 ,2 ]
Shafarevich, A. I. [1 ,2 ,3 ,4 ]
机构
[1] Russian Acad Sci, Ishlinsky Inst Problems Mech, Moscow 119526, Russia
[2] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Oblast, Russia
[3] Moscow MV Lomonosov State Univ, Fac Mech & Math, Moscow 119991, Russia
[4] Natl Res Ctr, Kurchatov Inst, Moscow 123182, Russia
基金
俄罗斯基础研究基金会;
关键词
DECREASING SOLUTIONS; REPRESENTATIONS;
D O I
10.1134/S1064562418020217
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An analogue of Maslov's canonical operator for rapidly decaying functions is defined. The construction generalizes the a,/a,tau-canonical operator on homogeneous manifolds from distributions to smooth localized functions. The main novelty is that the wave profile must be specified explicitly.
引用
收藏
页码:177 / 180
页数:4
相关论文
共 14 条
  • [1] Analogue of Maslov’s Canonical Operator for Localized Functions and Its Applications to the Description of Rapidly Decaying Asymptotic Solutions of Hyperbolic Equations and Systems
    V. E. Nazaikinskii
    A. I. Shafarevich
    Doklady Mathematics, 2018, 97 : 177 - 180
  • [2] Maslov's Canonical Operator in Problems on Localized Asymptotic Solutions of Hyperbolic Equations and Systems
    Nazaikinskii, V. E.
    Shafarevich, A. I.
    MATHEMATICAL NOTES, 2019, 106 (3-4) : 402 - 411
  • [3] Maslov's Canonical Operator in Problems on Localized Asymptotic Solutions of Hyperbolic Equations and Systems
    V. E. Nazaikinskii
    A. I. Shafarevich
    Mathematical Notes, 2019, 106 : 402 - 411
  • [4] New representations of the Maslov canonical operator and localized asymptotic solutions for strictly hyperbolic systems
    Allilueva, A. I.
    Dobrokhotov, S. Yu.
    Sergeev, S. A.
    Shafarevich, A. I.
    DOKLADY MATHEMATICS, 2015, 92 (02) : 548 - 553
  • [5] New representations of the Maslov canonical operator and localized asymptotic solutions for strictly hyperbolic systems
    A. I. Allilueva
    S. Yu. Dobrokhotov
    S. A. Sergeev
    A. I. Shafarevich
    Doklady Mathematics, 2015, 92 : 548 - 553
  • [6] Representations of rapidly decaying functions by the Maslov canonical operator
    S. Yu. Dobrokhotov
    B. Tirozzi
    A. I. Shafarevich
    Mathematical Notes, 2007, 82 : 713 - 717
  • [7] Representations of rapidly decaying functions by the Maslov canonical operator
    Dobrokhotov, S. Yu.
    Tirozzi, B.
    Shafarevich, A. I.
    MATHEMATICAL NOTES, 2007, 82 (5-6) : 713 - 717
  • [8] Maslov's canonical operator for degenerate hyperbolic equations
    Nazaikinskii, V. E.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2014, 21 (02) : 289 - +
  • [9] Maslov’s canonical operator for degenerate hyperbolic equations
    V. E. Nazaikinskii
    Russian Journal of Mathematical Physics, 2014, 21 : 289 - 290
  • [10] The Maslov canonical operator on a pair of Lagrangian manifolds and asymptotic solutions of stationary equations with localized right-hand sides
    A. Yu. Anikin
    S. Yu. Dobrokhotov
    V. E. Nazaikinskii
    M. Rouleux
    Doklady Mathematics, 2017, 96 : 406 - 410