Discriminants and automorphism groups of Veronese subrings of skew polynomial rings

被引:12
作者
Chan, K. [1 ]
Young, A. A. [2 ]
Zhang, J. J. [1 ]
机构
[1] Univ Washington, Dept Math, Box 354350, Seattle, WA 98195 USA
[2] DigiPen Inst Technol, Dept Math, Redmond, WA 98052 USA
基金
美国国家科学基金会;
关键词
Skew polynomial ring; Veronese subring; Discriminant; Automorphism group; Cancellation problem; Tits alternative; CANCELLATION PROBLEM; QUANTUM; RIGIDITY;
D O I
10.1007/s00209-017-1939-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study important invariants and properties of the Veronese subalgebras of q-skew polynomial rings, including their discriminant, center and automorphism group, as well as cancellation property and the Tits alternative.
引用
收藏
页码:1395 / 1420
页数:26
相关论文
共 22 条
[1]   DERIVATIONS AND SUTOMORPHISMS OF SOME QUANTUM ALGEBRAS [J].
ALEV, J ;
CHAMARIE, M .
COMMUNICATIONS IN ALGEBRA, 1992, 20 (06) :1787-1802
[2]   Rigidity of embeddings of minimal primitive quotients of U-q(sl(2)) in the Weyl-Hayashi quantum algebra [J].
Alev, J ;
Dumas, F .
NAGOYA MATHEMATICAL JOURNAL, 1996, 143 :119-146
[3]  
Andruskiewitsch N, 2008, IRMA LECT MATH THEOR, V12, P107, DOI 10.4171/047-1/4
[4]  
Bavula VV, 2000, T AM MATH SOC, V353, P769
[5]  
Bell J., 2016, SEL MATH IN PRESS
[6]   Quantum cluster algebras [J].
Berenstein, A ;
Zelevinsky, A .
ADVANCES IN MATHEMATICS, 2005, 195 (02) :405-455
[7]   The discriminant criterion and automorphism groups of quantized algebras [J].
Ceken, S. ;
Palmieri, J. H. ;
Wang, Y. -H. ;
Zhang, J. J. .
ADVANCES IN MATHEMATICS, 2016, 286 :754-801
[8]   The discriminant controls automorphism groups of noncommutative algebras [J].
Ceken, S. ;
Palmieri, J. H. ;
Wang, Y. -H. ;
Zhang, J. J. .
ADVANCES IN MATHEMATICS, 2015, 269 :551-584
[9]  
Ceken S., 2016, P S PURE MATH, V92, P119
[10]   Discriminant formulas and applications [J].
Chan, Kenneth ;
Young, Alexander A. ;
Zhang, James J. .
ALGEBRA & NUMBER THEORY, 2016, 10 (03) :557-596