Dexmedetomidine alleviates pulmonary ischemia-reperfusion injury through modulating the miR-21-5p/Nr4a1 signaling pathway

被引:14
|
作者
Dong, Wei [1 ]
Yang, Hongxia [2 ]
Cheng, Minghua [1 ]
Zhang, Xin [3 ]
Yin, Jingjing [4 ]
Zeng, Zhaodong [1 ]
Huang, Guang [5 ]
机构
[1] Shantou Univ, Dept Anesthesiol, Affiliated Hosp 1, Med Coll, Shantou City 515041, Guangdong, Peoples R China
[2] Shantou Univ, Dept Sect Hepat & Gallbladder Surg 2, Affiliated Hosp 1, Med Coll, Shantou City 515041, Guangdong, Peoples R China
[3] Shantou Univ, Dept Mol Biol Lab, Affiliated Hosp 1, Med Coll, Shantou City 515041, Guangdong, Peoples R China
[4] Shantou Univ, Dept Radiol, Affiliated Hosp 1, Med Coll, Shantou City 515041, Guangdong, Peoples R China
[5] Shantou Univ, Dept Paediat, Affiliated Hosp 1, Med Coll, Shantou City 515041, Guangdong, Peoples R China
关键词
Pulmonary ischemia-reperfusion injury; dexmedetomidine; mouse pulmonary vascular endothelial cells; MIR-21-5p; the orphan nuclear receptor 4A1; ACUTE LUNG INJURY; RATS; INFLAMMATION; ATTENUATION; APOPTOSIS; PROTECTS; CANCER; DAMAGE; MODEL; NR4A1;
D O I
10.18388/abp.2020_5374
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This study aims to investigate the protection of dexmedetomidine (Dex) against pulmonary ischemia-reperfusion injury (PIRI) in the mouse model and reveal the mechanism in hypoxia reoxygenation (H/R)-induced mouse pulmonary vascular endothelial cells (MPVECs). The lung wet-to-dry weight ratio, histopathological features, and malondialdehyde (MDA) concentrations were measured. The H/R-induced MPVECs were exposed to Dex, and the cell viability, cell apoptosis and protein expressions were assessed by the Cell Counting Kit-8 (CCK8) assay, flow cytometry and western blot, respectively. In addition, the regulatory relationship between miR-21-5p and orphan nuclear receptor 4A1 (Nr4a1) was revealed by several assays, including the dual-luciferase reporter assay, real-time quantitative polymerase chain reaction (RT-qPCR) and western blot. We found that the Dex treatment significantly alleviated pulmonary injury and decreased the level of MDA and wet/dry weight ratio in PIRI mice. Dex treatment also increased cell viability, reduced apoptotic ratio and downregulated expression levels of Cleaved Caspase-3 and Cleaved Caspase-9 in H/R induced MPVECs. Furthermore, the expression of miR-21-5p was upregulated, while Nr4a1 was downregulated by Dex in a concentration-dependent manner in H/R induced MPVECs. Moreover, Nr4a1 was verified as a target of miR-497-5p. Overexpression of Nr4a1 could reverse the protective effects of Dex on alleviating H/R-induced injury in MPVECs. Taken together, Dex treatment attenuated ischemia-reperfusion induced pulmonary in- jury through modulating the miR-21-5p/Nr4a1 signaling pathway.
引用
收藏
页码:521 / 529
页数:9
相关论文
共 50 条
  • [1] NR4A1 silencing protects against renal ischemia-reperfusion injury through activation of the β-catenin signaling pathway in old mice
    Shi, Wenjian
    Dong, Jing
    Liang, Yumei
    Liu, Kanghan
    Peng, Youming
    EXPERIMENTAL AND MOLECULAR PATHOLOGY, 2019, 111
  • [2] Dexmedetomidine alleviates myocardial ischemia-reperfusion injury by down-regulating miR-34b-3p to activate the Jagged1/Notch signaling pathway
    Guo, Peng
    Yi, Han
    Han, Mingming
    Liu, Xinxin
    Chen, Kemin
    Qing, Jie
    Yang, Fengrui
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2023, 116
  • [3] Effects of dexmedetomidine on myocardial ischemia-reperfusion injury through PI3K-Akt-mTOR signaling pathway
    Zhang, J.
    Jiang, H.
    Liu, D-H
    Wang, G-N
    EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES, 2019, 23 (15) : 6736 - 6743
  • [4] Propofol preconditioning alleviates myocardia ischemia-reperfusion injury in rats through the Wnt/β-catenin signaling pathway
    Du, Jianwei
    Chen, Tangyong
    Li, Yuan
    Yu, Chaxiu
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, 2020, 13 (04): : 2692 - 2699
  • [5] Dexmedetomidine alleviates cerebral ischemia-reperfusion injury via inhibiting autophagy through PI3K/Akt/mTOR pathway
    Li, Jianli
    Wang, Keyan
    Liu, Meinv
    He, Jinhua
    Zhang, Huanhuan
    Liu, Huan
    JOURNAL OF MOLECULAR HISTOLOGY, 2023, 54 (03) : 173 - 181
  • [6] Physically engineered extracellular vesicles targeted delivering miR-21-5p to promote renoprotection after renal ischemia-reperfusion injury
    Wu, Di
    Ma, Wenjie
    Wang, Liucheng
    Long, Chengcheng
    Chen, Silin
    Liu, Jingyu
    Qian, Yiguan
    Zhao, Jun
    Zhou, Changcheng
    Jia, Ruipeng
    MATERIALS TODAY BIO, 2025, 31
  • [7] Dexmedetomidine pretreatment alleviates cerebral ischemia-reperfusion injury in rats through resisting oxidative damage and regulating TGF-β1/Smad2/3 signaling pathway
    Luo, Jun
    Hao, Peng
    Gao, Xuesong
    Wang, Yuchuan
    Sun, Ruiqiang
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, 2018, 11 (08): : 8479 - 8486
  • [8] Dexmedetomidine Alleviates Lung Oxidative Stress Injury Induced by Ischemia-Reperfusion in Diabetic Rats via the Nrf2-Sulfiredoxin1 Pathway
    Wang, Xuan
    Zhang, Bing
    Li, Guangqi
    Zhao, Han
    Tian, Xiaojun
    Yu, Junmin
    Yin, Yanwei
    Meng, Chao
    BIOMED RESEARCH INTERNATIONAL, 2022, 2022
  • [9] Cordycepin alleviates renal ischemia-reperfusion injury by suppressing the p38/JNK signaling pathway
    Chen, Qi
    Guo, Jiayu
    Han, Shangting
    Wang, Tianyu
    Xia, Kang
    Yu, Bo
    Lu, Yifan
    Qiu, Tao
    Zhou, Jiangqiao
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2025, 150
  • [10] Dexmedetomidine alleviates cerebral ischemia-reperfusion injury by inhibiting endoplasmic reticulum stress dependent apoptosis through the PERK-CHOP-Caspase-11 pathway
    Liu, Chong
    Fu, Qiang
    Mu, Rong
    Wang, Fang
    Zhou, Chunjing
    Zhang, Li
    Yu, Baojin
    Zhang, Yang
    Fang, Tao
    Tian, Fengshi
    BRAIN RESEARCH, 2018, 1701 : 246 - 254