A Rigidity Result for Overdetermined Elliptic Problems in the Plane

被引:31
作者
Ros, Antonio [1 ]
Ruiz, David [2 ]
Sicbaldi, Pieralberto [1 ,3 ]
机构
[1] Univ Granada, Dept Geometria & Topol, Campus Fuentenueva, E-18071 Granada, Spain
[2] Univ Granada, Dept Anal Matemat, Campus Fuentenueva, E-18071 Granada, Spain
[3] Aix Marseille Univ, CNRS, Cent Marseille, I2M,UMR 7373, F-13453 Marseille, France
关键词
BOUNDARY-VALUE-PROBLEMS; RADIAL SYMMETRY; EQUATIONS; MONOTONICITY; EXISTENCE;
D O I
10.1002/cpa.21696
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let f:[0,+) be a (locally) Lipschitz function and Omega subset of R-2 a C-1,C-alpha domain whose boundary is unbounded and connected. If there exists a positive bounded solution to the overdetermined elliptic problem {Delta u + f(u) = 0 in Omega, u = 0 on partial derivative Omega, partial derivative u/partial derivative(nu) over bar = 1 on partial derivative Omega, we prove that Omega is a half-plane. In particular, we obtain a partial answer to a question raised by H. Berestycki, L. Caffarelli, and L. Nirenberg in 1997.(c) 2017 Wiley Periodicals, Inc.
引用
收藏
页码:1223 / 1252
页数:30
相关论文
共 37 条
[1]   Radial symmetry of overdetermined boundary value problems in exterior domains [J].
Aftalion, A ;
Busca, J .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (06) :633-638
[2]  
ALT HW, 1981, J REINE ANGEW MATH, V325, P105
[3]   Entire solutions of semilinear elliptic equations in R3 and a conjecture of De Giorgi [J].
Ambrosio, L ;
Cabré, X .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 13 (04) :725-739
[4]  
[Anonymous], VESTNIK LENINGRAD U
[5]  
Anzellotti G., 1983, TRACES BOUNDED VECTO
[6]  
Berestycki H, 1997, COMMUN PUR APPL MATH, V50, P1089, DOI 10.1002/(SICI)1097-0312(199711)50:11<1089::AID-CPA2>3.0.CO
[7]  
2-6
[8]  
Berestycki H., 1991, Bol. Soc. Bras. Mat, V22, P1, DOI [DOI 10.1007/BF01244896, 10.1007/BF01244896]
[9]  
Berestycki H., 1997, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), V25, P69
[10]   MINIMAL CONES AND BERNSTEIN PROBLEM [J].
BOMBIERI, E ;
DEGIORGI, E ;
GIUSTI, E .
INVENTIONES MATHEMATICAE, 1969, 7 (03) :243-&