F3-Net: Feature Fusion and Filtration Network for Object Detection in Optical Remote Sensing Images

被引:21
作者
Ye, Xinhai [1 ]
Xiong, Fengchao [1 ]
Lu, Jianfeng [1 ]
Zhou, Jun [2 ]
Qian, Yuntao [3 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China
[2] Griffith Univ, Sch Informat & Commun Technol, Nathan, Qld 4111, Australia
[3] Zhejiang Univ, Coll Comp Sci, Inst Artificial Intelligence, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
context information; object detection; feature filtration; convolutional neural networks (CNNs); optical remote sensing image; CONVOLUTIONAL NEURAL-NETWORK; SEGMENTATION; AWARE;
D O I
10.3390/rs12244027
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Object detection in remote sensing (RS) images is a challenging task due to the difficulties of small size, varied appearance, and complex background. Although a lot of methods have been developed to address this problem, many of them cannot fully exploit multilevel context information or handle cluttered background in RS images either. To this end, in this paper, we propose a feature fusion and filtration network (F-3-Net) to improve object detection in RS images, which has higher capacity of combining the context information at multiple scales while suppressing the interference from the background. Specifically, F-3-Net leverages a feature adaptation block with a residual structure to adjust the backbone network in an end-to-end manner, better considering the characteristics of RS images. Afterward, the network learns the context information of the object at multiple scales by hierarchically fusing the feature maps from different layers. In order to suppress the interference from cluttered background, the fused feature is then projected into a low-dimensional subspace by an additional feature filtration module. As a result, more relevant and accurate context information is extracted for further detection. Extensive experiments on DOTA, NWPU VHR-10, and UCAS AOD datasets demonstrate that the proposed detector achieves very promising detection performance.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 50 条
  • [31] Spatial-Transformer and Cross-Scale Fusion Network (STCS-Net) for Small Object Detection in Remote Sensing Images
    Lan, Jinhui
    Zhang, Cheng
    Lu, Weijian
    Gu, Naiwei
    [J]. JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2023, 51 (07) : 1427 - 1439
  • [32] Edge-Aware Multiscale Feature Integration Network for Salient Object Detection in Optical Remote Sensing Images
    Zhou, Xiaofei
    Shen, Kunye
    Liu, Zhi
    Gong, Chen
    Zhang, Jiyong
    Yan, Chenggang
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [33] Rotation Equivariant Feature Image Pyramid Network for Object Detection in Optical Remote Sensing Imagery
    Shamsolmoali, Pourya
    Zareapoor, Masoumeh
    Chanussot, Jocelyn
    Zhou, Huiyu
    Yang, Jie
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [34] Lightweight Salient Object Detection in Optical Remote Sensing Images via Feature Correlation
    Li, Gongyang
    Liu, Zhi
    Bai, Zhen
    Lin, Weisi
    Ling, Haibin
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [35] FEFN: Feature Enhancement Feedforward Network for Lightweight Object Detection in Remote Sensing Images
    Wu, Jing
    Ni, Rixiang
    Chen, Zhenhua
    Huang, Feng
    Chen, Liqiong
    [J]. REMOTE SENSING, 2024, 16 (13)
  • [36] FRPNet: A Feature-Reflowing Pyramid Network for Object Detection of Remote Sensing Images
    Wang, Jingyu
    Wang, Yezi
    Wu, Yulin
    Zhang, Ke
    Wang, Qi
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [37] Gated Path Aggregation Feature Pyramid Network for Object Detection in Remote Sensing Images
    Zheng, Yuchao
    Zhang, Xinxin
    Zhang, Rui
    Wang, Dahan
    [J]. REMOTE SENSING, 2022, 14 (18)
  • [38] Object Detection Algorithm of Optical Remote Sensing Images Based on YOLOv3
    Wang Peng
    Xin Xuejing
    Wang Liqin
    Liu Rui
    [J]. LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (20)
  • [39] Multi-Content Complementation Network for Salient Object Detection in Optical Remote Sensing Images
    Li, Gongyang
    Liu, Zhi
    Lin, Weisi
    Ling, Haibin
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [40] MFCANet: Multiscale Feature Context Aggregation Network for Oriented Object Detection in Remote-Sensing Images
    Jiang, Honghui
    Luo, Tingting
    Peng, Hu
    Zhang, Guozheng
    [J]. IEEE ACCESS, 2024, 12 : 45986 - 46001