Photoacoustic spectroscopy with quantum cascade lasers for trace gas detection

被引:29
作者
Elia, Angela [1 ]
Di Franco, Cinzia [1 ]
Lugara, Pietro Mario [1 ]
Scamarcio, Gaetano [1 ]
机构
[1] Univ Bari, Dept Phys, CNR, INFM Reg Lab,LIT3, I-70126 Bari, Italy
关键词
photoacoustic spectroscopy; quantum cascade laser; trace gas detection;
D O I
10.3390/s6101411
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Various applications, such as pollution monitoring, toxic-gas detection, non invasive medical diagnostics and industrial process control, require sensitive and selective detection of gas traces with concentrations in the parts in 10(9) (ppb) and sub-ppb range. The recent development of quantum-cascade lasers (QCLs) has given a new aspect to infrared laser-based trace gas sensors. In particular, single mode distributed feedback QCLs are attractive spectroscopic sources because of their excellent properties in terms of narrow linewidth, average power and room temperature operation. In combination with these laser sources, photoacoustic spectroscopy offers the advantage of high sensitivity and selectivity, compact sensor platform, fast time-response and user friendly operation. This paper reports recent developments on quantum cascade laser-based photoacoustic spectroscopy for trace gas detection. In particular, different applications of a photoacoustic trace gas sensor employing a longitudinal resonant cell with a detection limit on the order of hundred ppb of ozone and ammonia are discussed. We also report two QC laser-based photoacoustic sensors for the detection of nitric oxide, for environmental pollution monitoring and medical diagnostics, and hexamethyldisilazane, for applications in semiconductor manufacturing process.
引用
收藏
页码:1411 / 1419
页数:9
相关论文
共 23 条
[1]  
ALVING K, 1993, EUR RESPIR J, V6, P1368
[2]   Sub-ppbv nitric oxide concentration measurements using cw thermoelectrically cooled quantum cascade laser-based integrated cavity output spectroscopy [J].
Bakhirkin, YA ;
Kosterev, AA ;
Curl, RF ;
Tittel, FK ;
Yarekha, DA ;
Hvozdara, L ;
Giovannini, M ;
Faist, J .
APPLIED PHYSICS B-LASERS AND OPTICS, 2006, 82 (01) :149-154
[3]   Continuous wave operation of a mid-infrared semiconductor laser at room temperature [J].
Beck, M ;
Hofstetter, D ;
Aellen, T ;
Faist, J ;
Oesterle, U ;
Ilegems, M ;
Gini, E ;
Melchior, H .
SCIENCE, 2002, 295 (5553) :301-305
[4]   Photoacoustic detection of ozone using a quantum cascade laser [J].
da Silva, MG ;
Vargas, H ;
Miklós, A ;
Hess, P .
APPLIED PHYSICS B-LASERS AND OPTICS, 2004, 78 (06) :677-680
[5]   Room-temperature, high-power, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ∼9.6 μm [J].
Darvish, S. R. ;
Slivken, S. ;
Evans, A. ;
Yu, J. S. ;
Razeghi, M. .
APPLIED PHYSICS LETTERS, 2006, 88 (20)
[6]   High-power quantum cascade lasers grown by low-pressure metal organic vapor-phase epitaxy operating in continuous wave above 400 K [J].
Diehl, L. ;
Bour, D. ;
Corzine, S. ;
Zhu, J. ;
Hofler, G. ;
Loncar, M. ;
Troccoli, M. ;
Capasso, Federico .
APPLIED PHYSICS LETTERS, 2006, 88 (20)
[7]   Quantum cascade laser-based photoacoustic spectroscopy of volatile chemicals:: Application to hexamethyldisilazane [J].
Elia, A ;
Rizzi, F ;
Di Franco, C ;
Lugarà, PM ;
Scamarcio, G .
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2006, 64 (02) :426-429
[8]   Photoacoustic detection of nitric oxide by use of a quantum-cascade laser [J].
Elia, A ;
Lugará, PM ;
Giancaspro, C .
OPTICS LETTERS, 2005, 30 (09) :988-990
[9]   Photoacoustic spectroscopy with quantum cascade distributed-feedback lasers [J].
Hofstetter, D ;
Beck, M ;
Faist, J ;
Nägele, M ;
Sigrist, MW .
OPTICS LETTERS, 2001, 26 (12) :887-889
[10]   Chemical sensors based on quantum cascade lasers [J].
Kosterev, AA ;
Tittel, FK .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2002, 38 (06) :582-591