Factorization Models for Context-/Time-Aware Movie Recommendations

被引:42
作者
Gantner, Zeno [1 ]
Rendle, Steffen [1 ]
Schmidt-Thieme, Lars [1 ]
机构
[1] Univ Hildesheim, Machine Learning Grp, Hildesheim, Germany
来源
PROCEEDINGS OF THE RECSYS'2010 ACM CHALLENGE ON CONTEXT-AWARE MOVIE RECOMMENDATION (CAMRA2010) | 2010年
关键词
context-aware recommender systems; item recommendation; temporal; tensor factorization; matrix factorization;
D O I
10.1145/1869652.1869654
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the scope of the Challenge on Context-aware Movie Recommendation (CAMRa2010), context can mean temporal context (Task 1), mood (Task 2), or social context (Task 3). We suggest to use Pairwise Interaction Tensor Factorization (PITF), a method used for personalized tag recommendation, to model the temporal (week) context in Task 1 of the challenge. We also present an extended version of PITF that handles the week context in a smoother way. In the experiments, we compare PITF against di ff erent item recommendation baselines that do not take context into account, and a non-personalized context-aware baseline.
引用
收藏
页码:14 / 19
页数:6
相关论文
共 10 条
  • [1] [Anonymous], 1998, Proceedings of the AAAI Workshop on Recommender Systems
  • [2] [Anonymous], 2009, BPR: Bayesian Personalized Ranking from Implicit Feedback
  • [3] [Anonymous], 2008, Introduction to information retrieval
  • [4] Gunawardana A., 2009, Proceedings of the Third ACM Conference on Recommender Systems, V9, P117
  • [5] Gunawardana A, 2008, RECSYS'08: PROCEEDINGS OF THE 2008 ACM CONFERENCE ON RECOMMENDER SYSTEMS, P19
  • [6] Jaeschke R., 2008, AI COMMUN, V21
  • [7] Pan R., 2008, ICDM 2008
  • [8] Rendle S., 2009, DISCOVERY CHALLENGE
  • [9] Rendle Stefen, 2010, WSDM
  • [10] Said A., 2010, CAMRA2010