Quasi-isometry classification of right-angled Artin groups that split over cyclic subgroups

被引:6
作者
Margolis, Alexander [1 ]
机构
[1] Vanderbilt Univ, Dept Math, 1326 Stevenson Ctr, Nashville, TN 37240 USA
基金
以色列科学基金会; 英国工程与自然科学研究理事会;
关键词
Quasi-isometry; quasi-isometric classification; right-angled Artin group; !text type='JS']JS[!/text]J tree; SIMPLICIAL GROUP-ACTIONS; INVARIANCE; FINITE; TREES;
D O I
10.4171/GGD/584
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a one-ended right-angled Artin group, we give an explicit description of its JSJ tree of cylinders over infinite cyclic subgroups in terms of its defining graph. This is then used to classify certain right-angled Artin groups up to quasi-isometry. In particular, we show that if two right-angled Artin groups are quasi-isometric, then their JSJ trees of cylinders are weakly equivalent. Although the converse to this is not generally true, we define quasi-isometry invariants known as stretch factors that can distinguish quasi-isometry classes of RAAGs with weakly equivalence JSJ trees of cylinders. We then show that for many right-angled Artin groups, being weakly equivalent and having matching stretch factors is a complete quasi-isometry invariant.
引用
收藏
页码:1351 / 1417
页数:67
相关论文
共 39 条
[1]   Pushing fillings in right-angled Artin groups [J].
Abrams, Aaron ;
Brady, Noel ;
Dani, Pallavi ;
Duchin, Moon ;
Young, Robert .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2013, 87 :663-688
[2]  
Agol I, 2013, DOC MATH, V18, P1045
[3]  
Behrstock J., 2017, DUKE MATH J
[4]   Divergence and quasimorphisms of right-angled Artin groups [J].
Behrstock, Jason ;
Charney, Ruth .
MATHEMATISCHE ANNALEN, 2012, 352 (02) :339-356
[5]   Quasi-isometric classification of graph manifold groups [J].
Behrstock, Jason A. ;
Neumann, Walter D. .
DUKE MATHEMATICAL JOURNAL, 2008, 141 (02) :217-240
[6]   Quasi-isometric classification of some high dimensional right-angled Artin groups [J].
Behrstock, Jason A. ;
Januszkiewicz, Tadeusz ;
Neumann, Walter D. .
GROUPS GEOMETRY AND DYNAMICS, 2010, 4 (04) :681-692
[7]   BOUNDING THE COMPLEXITY OF SIMPLICIAL GROUP-ACTIONS ON TREES [J].
BESTVINA, M ;
FEIGHN, M .
INVENTIONES MATHEMATICAE, 1991, 103 (03) :449-469
[8]   Morse theory and finiteness properties of groups [J].
Bestvina, M ;
Brady, N .
INVENTIONES MATHEMATICAE, 1997, 129 (03) :445-470
[9]   The asymptotic geometry of right-angled Artin groups, I [J].
Bestvina, Mladen ;
Kleiner, Bruce ;
Sageev, Michah .
GEOMETRY & TOPOLOGY, 2008, 12 :1653-1699
[10]   Cut points and canonical splittings of hyperbolic groups [J].
Bowditch, BH .
ACTA MATHEMATICA, 1998, 180 (02) :145-186