TiO2 Nanoparticle/Polyimide Nanocomposite for Ultrahigh-Temperature Energy Storage

被引:9
作者
Chen, Xinrui [1 ,2 ]
Zhu, Wenbo [1 ]
Chen, Jianwen [2 ]
Cao, Qing [1 ,2 ]
Chen, Yingxi [1 ,2 ]
Hu, Dengyan [1 ,2 ]
机构
[1] Foshan Univ, Sch Mechatron Engn & Automat, Foshan 528000, Peoples R China
[2] Foshan Univ, Sch Elect Informat Engn, Foshan 528000, Peoples R China
关键词
polyimide-based nanocomposite; ultrahigh-temperature energy storage; dielectric permittivity; dielectric loss; finite element simulation; TI3C2; MXENE; DISCHARGE EFFICIENCY; DIELECTRIC MATERIALS; DENSITY; FILMS; OXIDATION;
D O I
10.3390/nano12244458
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
With the development of electronic technology, there is an increasing demand for high-temperature dielectric energy storage devices based on polyimides for a wide range of applications. However, the current nanofillers/PI nanocomposites are used for energy harvesting at no more than 200 degrees C, which does not satisfy the applications in the oil and gas, aerospace, and power transmission industries that require an operating temperature of 250-300 degrees C. Therefore, we introduced a nanocomposite based on nonsolid TiO2 nanoparticles and polyimide (PI) with high energy storage performance at an ultrahigh temperature of 300 degrees C. The synergy of excellent dielectric properties and a high breakdown strength endowed the nanocomposite with a low loading content of 1 wt% and a high energy storage density of 5.09 J cm(-3). Furthermore, we found that the nanocomposite could stably operate at 300 degrees C with an outstanding energy storage capability (2.20 J cm(-3)). Additionally, finite element simulations demonstrated that the partially hollow nanostructures of the nanofillers avoided the evolution of breakdown paths, which optimized the breakdown strength and energy storage performance of the related nanocomposites. This paper provides an avenue to broaden the application areas of PI-based nanocomposites as ultrahigh-temperature energy-storage devices.
引用
收藏
页数:12
相关论文
共 50 条
[41]   Graphene/TiO2 nanocomposite electrodes sensitized with tin sulfide quantum dots for energy issues [J].
Badawi, Ali ;
Al-Baradi, Ateyyah M. ;
Atta, A. A. ;
Algarni, Saud A. ;
Almalki, Abdulraheem S. A. ;
Alharthi, Sami S. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2020, 121
[42]   Energy storage ability and anti-corrosion properties of Bi-doped TiO2 nanotube arrays [J].
Yang, Jing ;
Wang, Xixin ;
Yang, Xiaojing ;
Li, Jiaxin ;
Zhang, Xinghua ;
Zhao, Jianling .
ELECTROCHIMICA ACTA, 2015, 169 :227-232
[43]   Repeated thermal shock behavior of the ZrB2-SiC-ZrC ultrahigh-temperature ceramic [J].
Qi, Fei ;
Meng, Songhe ;
Guo, Hao .
MATERIALS & DESIGN, 2012, 35 :133-137
[44]   Enhanced energy storage performance in a PVDF/PMMA/TiO2 blending nanodielectric material [J].
Liu, Yongbin ;
Gao, Jinghui ;
Yao, Ruifeng ;
Zhang, Yang ;
Zhao, Tongxin ;
Tang, Chao ;
Zhong, Lisheng .
MATERIALS CHEMISTRY AND PHYSICS, 2020, 250
[45]   Large energy density at high-temperature and excellent thermal stability in polyimide nanocomposite contained with small loading of BaTiO3 nanofibers [J].
Hu, Penghao ;
Sun, Weidong ;
Fan, Mingzhi ;
Qian, Jianfeng ;
Jiang, Jianyong ;
Dan, Zhenkang ;
Lin, Yuanhua ;
Nan, Ce-Wen ;
Li, Ming ;
Shen, Yang .
APPLIED SURFACE SCIENCE, 2018, 458 :743-750
[46]   Formation of Highly Conductive Boron-Doped Diamond on TiO2 Nanotubes Composite for Supercapacitor or Energy Storage Devices [J].
Sawczak, M. ;
Sobaszek, M. ;
Siuzdak, K. ;
Ryl, J. ;
Bogdanowicz, R. ;
Darowicki, K. ;
Gazda, M. ;
Cenian, A. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (10) :A2085-A2092
[47]   Highly stable energy-storage performance of donor-acceptor co-doped TiO2 films [J].
Hua, Wenjing ;
Li, Ze ;
Zhao, Wenyue ;
Wang, Zhao ;
Peng, Yazhou ;
Shi, Lei ;
Wang, Jie ;
Yang, Xiaoxia ;
Shu, Yang ;
Fei, Weidong ;
Zhao, Yu .
MATERIALS RESEARCH BULLETIN, 2024, 179
[48]   ZnO/porous-Si and TiO2/porous-Si nanocomposite nanopillars [J].
Wang, Dong ;
Yan, Yong ;
Schaaf, Peter ;
Sharp, Thomas ;
Schoenherr, Sven ;
Ronning, Carsten ;
Ji, Ran .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2015, 33 (01)
[49]   A Novel Polyaniline Nanocomposite with Doping Effects of Poly(Methyl Methacrylate) and TiO2 Nanoparticles [J].
Sidwaba, Unathi ;
Feleni, Usisipho ;
Makelane, Hlamulo ;
Nxusani, Ezo ;
Wilson, Lindsay ;
Qakala, Sinazo ;
Rassie, Candice ;
Masikini, Milua ;
Waryo, Tesfaye ;
Ajayi, Rachel F. ;
Baker, Priscilla ;
Iwuoha, Emmanuel .
JOURNAL OF NANO RESEARCH, 2016, 44 :281-292
[50]   Poly ortho aminophenol/TiO2 nanocomposite: Electrosynthesis and characterization [J].
Ehsani, A. ;
Mahjani, M. G. ;
Bordbar, M. ;
Moshrefi, R. .
SYNTHETIC METALS, 2013, 165 :51-55