Pt/Fe3O4 Core/Shell Triangular Nanoprisms by Heteroepitaxy: Facet Selectivity at the Pt-Fe3O4 Interface and the Fe3O4 Outer Surface

被引:30
|
作者
Jiang, Maowei [1 ]
Liu, Wei [2 ]
Yang, Xiaoli [1 ]
Jiang, Zheng [3 ]
Yao, Tao [2 ]
Wei, Shiqiang [2 ]
Peng, Xiaogang [1 ]
机构
[1] Zhejiang Univ, Dept Chem, Ctr Chem Novel & High Performance Mat, Hangzhou 310027, Zhejiang, Peoples R China
[2] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230029, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Appl Phys, Shanghai Synchrotron Radiat Facil, Shanghai 201204, Peoples R China
基金
中国国家自然科学基金;
关键词
nanoprism; heteroepitaxy; core/shell; facet-selectivity; interface; surface; METAL-OXIDE NANOCRYSTALS; ONE-POT SYNTHESIS; NANOROD HETEROSTRUCTURES; COLLOIDAL NANOCRYSTALS; MAGNETIC NANOPARTICLES; CHARGE SEPARATION; CDSE NANOCRYSTALS; GENERAL-APPROACH; SHAPE CONTROL; IRON-OXIDE;
D O I
10.1021/acsnano.5b04130
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Pt/Fe3O4 core/shell triangular nanoprisms were synthesized using seed-mediated heteroepitaxy. Their well-defined shape, facets, and ordered-assembly allowed detailed analysis of mechanism of the heteroepitaxy. At the Pt-Fe3O4 interface, existence of both lattice and chemical mismatch resulted in facet-selective epitaxy along (111) directions of two lattices. X-ray absorption fine structure measurements demonstrated that the Pt seed nanocrystals were composed of an iron-rich Pt-Fe metallic thin layer sandwiched between the Pt core and a Fe-O outer-surface. The Fe-O outer-surface of the seed nanocrystals presumably offered epitaxial sites for the following deposition of the Fe3O4 shell. Each tip and side of a triangular nanoprism respectively possessed a groove and a ridge, and a (111) plane parallel to the basal planes linked all grooves and ridges. This interesting (111) plane approximately bisected the triangle nanoprisms and located near the Pt-seed. The outer surface of the hybrid nanocrystals was also found to be facet-selective, that is, solely {111} facets of Fe3O4 lattice. These polar {111} facets allowed the surface to be only occupied with high-density iron ions, and thus offered best surface coordination for the electron donating ligands in the solution.
引用
收藏
页码:10950 / 10960
页数:11
相关论文
共 50 条
  • [32] Synthesis of Fe3O4,Fe2O3,Ag/Fe3O4 and Ag/Fe2O3 nanoparticles and their electrocatalytic properties
    PAN Lu
    TANG Jing
    CHEN YongHong
    Science China(Chemistry), 2013, 56 (03) : 362 - 369
  • [33] Synthesis of Fe3O4, Fe2O3, Ag/Fe3O4 and Ag/Fe2O3 nanoparticles and their electrocatalytic properties
    Pan Lu
    Tang Jing
    Chen YongHong
    SCIENCE CHINA-CHEMISTRY, 2013, 56 (03) : 362 - 369
  • [34] Synthesis of Fe3O4, Fe2O3, Ag/Fe3O4 and Ag/Fe2O3 nanoparticles and their electrocatalytic properties
    Lu Pan
    Jing Tang
    YongHong Chen
    Science China Chemistry, 2013, 56 : 362 - 369
  • [35] Mossbauer Studies of the Structure of Core/Shell Fe3O4/-Fe2O3 Nanoparticles
    Kamzin, A. S.
    Obaidat, I. M.
    Valliulin, A. A.
    Semenov, V. G.
    Al-Omari, I. A.
    Nayek, C.
    TECHNICAL PHYSICS LETTERS, 2019, 45 (05) : 426 - 429
  • [36] The L spectrum of Fe and Fe3O4
    Scheffel, Andy
    Abmann, Andrea
    Dellith, Jan
    Wendt, Michael
    MICROCHIMICA ACTA, 2006, 155 (1-2) : 269 - 274
  • [37] Properties of nanocomposites of α-Fe and Fe3O4
    Brahma, P
    Banerjee, S
    Das, D
    Mukhopadhyay, PK
    Chatterjee, S
    Nigam, AK
    Chakravorty, D
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2002, 246 (1-2) : 162 - 168
  • [38] The L Spectrum of Fe and Fe3O4
    Andy Scheffel
    Andrea Aßmann
    Jan Dellith
    Michael Wendt
    Microchimica Acta, 2006, 155 : 269 - 274
  • [39] FE3O4 AND FE3S4 IN A BACTERIUM
    BAZYLINSKI, DA
    HEYWOOD, BR
    MANN, S
    FRANKEL, RB
    NATURE, 1993, 366 (6452) : 218 - 218
  • [40] The magnetization reversal and low field compensation in a Fe3O4/Mn3O4/Fe3O4 trilayer
    Lin, S. C.
    Kuo, K. M.
    Chern, G.
    JOURNAL OF APPLIED PHYSICS, 2011, 109 (07)